Araştırma Makalesi
BibTex RIS Kaynak Göster

Voltammetric Determination of Rutin by Using Disposable Pencil Graphite Electrode

Yıl 2019, Cilt: 12 Sayı: 1, 158 - 169, 24.03.2019
https://doi.org/10.18185/erzifbed.432836

Öz




















In this study, an
electrochemical method was developed for the determination of rutin. The pencil
graphite electrode, a disposable and low cost electrode, showed a very good
catalytic effect with the significant enhancement of the peak current compared
to the glassy carbon electrode. Under optimized conditions, the pencil graphite
electrode had two linear ranges from 0.39 to 166.70×10-7 M and
166.70 to 1060.60×10-7 M rutin, the limit of detection was also obtained
1.13 nM (S/N=3). The percentage of recoveries were obtained in a range between
98.98 and 101.02 % for five successive determinations of rutin, which indicate
acceptable repeatability. This method was successfully applied for the direct
determination of rutin in real samples such as buckwheat, green tea and red apple. Finally, the interference
effects of some species to the determination of rutin was also evaluated.

Kaynakça

  • Apetrei, I. M., Apetrei, C. (2018). “A modified nanostructured graphene-gold nanoparticle carbon screen- printed electrode for the sensitive voltammetric detection of rutin”, Measurement, 114, 37–43.
  • Arvand, M., Farahpour, M., Ardaki, M. S. (2018). “Electrochemical characterization of in situ functionalized gold organosulfur self-assembled monolayer with conducting polymer and carbon nanotubes for determination of rutin”, Talanta, 176, 92–101.
  • Attia, T. Z. (2016). “Simultaneous determination of rutin and ascorbic acid mixture in their pure forms and combined dosage form”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 82–86.
  • Aziz, Md. A., Kawde, A. N. (2013). “Gold nanoparticle-modified graphitepencilelectrode for thehigh-sensitivitydetectionofhydrazine”, Talanta, 115, 214–221.
  • Catunda Jr., F. E. A., de Araujo, M. F., Granero, A. M., Arevalo, F. J., de Carvalho, M. G., Zon, M. A., Fernande, H. (2011). “The redox thermodynamics and kinetics of flavonoid rutin adsorbed at glassy carbon electrodes by stripping square wave voltammetry”, Electrochimica Acta, 56, 9707– 9713.
  • Chen, X., Yang, G., Feng, S., Shi, L., Huang, Z., Pan, H., Liu, W. (2017). “Au@AuPt nanoparticles embedded in B-doped graphene: A superior electrocatalyst for determination of rutin”, Applied Surface Science, 402, 232–244.
  • Da Rocha, J. L. C., da Silva, D. F., de Santana, A. R., da Costa, D. M., Pastore, J. F. B., Alves, C. Q., Junior, M. C. S. S., Brandao, H. N. (2018). “Asemeia ovata (Polygalaceae): Quantitative determination and evaluation in silico of identified substances by HPLC-DAD”, Computational Biology and Chemistry, 75, 65–73.
  • Deng, P., Xu, Z., Feng, Y., (2012). “Highly sensitive and simultaneous determination of ascorbic acid and rutin at an acetylene black paste electrode coated with cetyltrimethyl ammonium bromide film”, Journal of Electroanalytical Chemistry, 683, 47–54.
  • Donata, P., Rigano, F., Cacciola, F., Schure, M., Farnetti, S., Russo, M., Dugo, P., Mondello, L. (2016). “Comprehensive two-dimensional liquid chromatography–tandemmass spectrometry for the simultaneous determination of winepolyphenols and target contaminants”, Journal of Chromatography A, 1458, 54–62.
  • Dorraji, P. S., Jalali, F. (2015). “Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film”, Bioelectrochemistry, 101, 66–74.
  • Franzoi, A. C., Spinelli, A., Vieira, I. C. (2008). “Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone)”, Journal of Pharmaceutical and Biomedical Analysis, 47, 973–977.
  • Gholivand, M. B., Mohammedi-Behzad, L., Hosseinkhani, H. (2016). “Application of a Cuechitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin”, Analytical Biochemistry, 493, 35-43.
  • Gullon, B., Lu-Chau, T. A., Moreira, M. T., Lema, J. M., Eibes, G. (2017). “Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability”, Trends in Food Science & Technology, 67, 220-235.
  • He, J., Feng, Y., Ouyang, H. Z., Yu, B., Chang, Y. X., Pan, G. X., Dong, G. Y., Wang, T., Gao, X. M. (2013). “A sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves”, Journal of Pharmaceutical and Biomedical Analysis, 84, 189– 195.
  • Kuntic, V., Pejic, N., Ivkovic, B., Vujic, Z., Ilic, K., Micic, S., Vukojevic, V. (2007). “Isocratic RP-HPLC method for rutin determination in solid oral dosage forms”, Journal of Pharmaceutical and Biomedical Analysis, 43, 718–721.
  • Li, S., Yang, B., Wang, J., Feng, Y., Yan, B., Xiong, Z., Du, Y. (2017). “A facile and green fabrication of Cu2O-Au/NG nanocomposites for sensitive electrochemical determination of rutin”, Journal of Electroanalytical Chemistry, 786, 20–27.
  • Liu, X., Zhao, X., Lu, X. (2010). “Electrochemical behavior of rutin on a multi-walled carbon nanotube and ionic liquid composite film modified electrode”, Colloids and Surfaces B: Biointerfaces, 81, 344–349.
  • Magarelli, G., Lima, L. H. C., da Silva, J. G., SouzaDe, J. R., de Castro, C. S. P. (2014). “Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods”, Microchemical Journal, 117, 149–155.
  • Marti, R., Valcarcel, M., Herrero-Martinez, J. M., Cebello-Cornejo, J., Rosello, S. (2017). “Simultaneous determination of main phenolic acids and flavonoids in tomato by micellar electrokinetic capillary electrophoresis”, Food Chemistry, 221, 439–446.
  • Mesquita E., Monteiro M. (2018). “Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice”, Food Research International, 106, 54–63.
  • Niu, X., Weng, W., Yin, C., Niu, Y., Li, G., Dong, R., Men, Y., Sun, W. (2018). “Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin”, Journal of Electroanalytical Chemistry, 811, 78–83.
  • Peng, L, Q., Li, Q., Chang, Y. X., An, M., Yang, R., Tan, Z., Hao, J., Cao, J., Xu, J. J., Hu, S. S. (2016). “Determination of natural phenols in olive fruits by chitosan assistedmatrix solid-phase dispersion microextraction and ultrahighperformance liquid chromatography with quadrupole time-of-flighttandem mass spectrometry”, Journal of Chromatography A, 1456, 68–76.
  • Sağlam, Ö., Dilgin, D. G., Ertek, B., Dilgin, Y. (2016). “Differential pulse voltammetric determination of eugenol at a pencil graphite electrode”, Materials Science and Engineering C, 60, 156–162.
  • Senguta, P., Sardar, P. S., Roy, P., Dasgusta, S., Bose, A. (2018). “Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques”, Journal of Photochemistry & Photobiology, B: Biology, 183, 101–110.
  • Sun, W., Wang, X., Zhu, H., Sun, X., Shi, F., Li, G., Sun, Z., (2013). “Graphene-MnO2 nanocomposite modified carbon ionic liquid electrode for the sensitive electrochemical detection of rutin”, Sensors and Actuators B, 178 443–449.

Tek Kullanımlık Kalem Grafit Elektrot Kullanılarak Rutinin Voltametrik Tayini

Yıl 2019, Cilt: 12 Sayı: 1, 158 - 169, 24.03.2019
https://doi.org/10.18185/erzifbed.432836

Öz

Bu çalışmada, rutinin tayini
için elektrokimyasal bir yöntem geliştirildi. Kalem grafit elektrot tek
kullanımlık ve düşük maliyetli bir elektrottur. Kalem grafit elektrot, camsı
karbon elektrota kıyasla pik akımının önemli ölçüde artmasıyla çok iyi bir
katalitik etki göstermiştir. Optimize edilmiş koşullar altında, kalem grafit
elektrot, 0.104 ile 166.70
×10-7 M ve 166.70
ile 1060.60×10-7 M rutin olmak üzere iki doğrusal yanıta sahiptir,
Tespit ve tayin limitleri sırasıyla 1.13×10-9
M (S / N = 3) ve 3.48×10-9 M olarak hesaplandı
. Yüzde geri kazanım, kabul
edilebilir tekrarlanabilirliği gösteren, ardışık beş tekrarlı rutin analizi
için % 98.98 ile % 101.02 arasında bir aralıkta elde edilmiştir. Geliştirilen yöntem;
karabuğday, yeşil çay ve kırmızı elma gibi gerçek numunelerde, rutinin doğrudan
tayini için başarıyla uygulanmıştır. Son olarak, bazı türlerin rutin tayinine
girişim etkileri de değerlendirilmiştir.

Kaynakça

  • Apetrei, I. M., Apetrei, C. (2018). “A modified nanostructured graphene-gold nanoparticle carbon screen- printed electrode for the sensitive voltammetric detection of rutin”, Measurement, 114, 37–43.
  • Arvand, M., Farahpour, M., Ardaki, M. S. (2018). “Electrochemical characterization of in situ functionalized gold organosulfur self-assembled monolayer with conducting polymer and carbon nanotubes for determination of rutin”, Talanta, 176, 92–101.
  • Attia, T. Z. (2016). “Simultaneous determination of rutin and ascorbic acid mixture in their pure forms and combined dosage form”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 82–86.
  • Aziz, Md. A., Kawde, A. N. (2013). “Gold nanoparticle-modified graphitepencilelectrode for thehigh-sensitivitydetectionofhydrazine”, Talanta, 115, 214–221.
  • Catunda Jr., F. E. A., de Araujo, M. F., Granero, A. M., Arevalo, F. J., de Carvalho, M. G., Zon, M. A., Fernande, H. (2011). “The redox thermodynamics and kinetics of flavonoid rutin adsorbed at glassy carbon electrodes by stripping square wave voltammetry”, Electrochimica Acta, 56, 9707– 9713.
  • Chen, X., Yang, G., Feng, S., Shi, L., Huang, Z., Pan, H., Liu, W. (2017). “Au@AuPt nanoparticles embedded in B-doped graphene: A superior electrocatalyst for determination of rutin”, Applied Surface Science, 402, 232–244.
  • Da Rocha, J. L. C., da Silva, D. F., de Santana, A. R., da Costa, D. M., Pastore, J. F. B., Alves, C. Q., Junior, M. C. S. S., Brandao, H. N. (2018). “Asemeia ovata (Polygalaceae): Quantitative determination and evaluation in silico of identified substances by HPLC-DAD”, Computational Biology and Chemistry, 75, 65–73.
  • Deng, P., Xu, Z., Feng, Y., (2012). “Highly sensitive and simultaneous determination of ascorbic acid and rutin at an acetylene black paste electrode coated with cetyltrimethyl ammonium bromide film”, Journal of Electroanalytical Chemistry, 683, 47–54.
  • Donata, P., Rigano, F., Cacciola, F., Schure, M., Farnetti, S., Russo, M., Dugo, P., Mondello, L. (2016). “Comprehensive two-dimensional liquid chromatography–tandemmass spectrometry for the simultaneous determination of winepolyphenols and target contaminants”, Journal of Chromatography A, 1458, 54–62.
  • Dorraji, P. S., Jalali, F. (2015). “Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film”, Bioelectrochemistry, 101, 66–74.
  • Franzoi, A. C., Spinelli, A., Vieira, I. C. (2008). “Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone)”, Journal of Pharmaceutical and Biomedical Analysis, 47, 973–977.
  • Gholivand, M. B., Mohammedi-Behzad, L., Hosseinkhani, H. (2016). “Application of a Cuechitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin”, Analytical Biochemistry, 493, 35-43.
  • Gullon, B., Lu-Chau, T. A., Moreira, M. T., Lema, J. M., Eibes, G. (2017). “Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability”, Trends in Food Science & Technology, 67, 220-235.
  • He, J., Feng, Y., Ouyang, H. Z., Yu, B., Chang, Y. X., Pan, G. X., Dong, G. Y., Wang, T., Gao, X. M. (2013). “A sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves”, Journal of Pharmaceutical and Biomedical Analysis, 84, 189– 195.
  • Kuntic, V., Pejic, N., Ivkovic, B., Vujic, Z., Ilic, K., Micic, S., Vukojevic, V. (2007). “Isocratic RP-HPLC method for rutin determination in solid oral dosage forms”, Journal of Pharmaceutical and Biomedical Analysis, 43, 718–721.
  • Li, S., Yang, B., Wang, J., Feng, Y., Yan, B., Xiong, Z., Du, Y. (2017). “A facile and green fabrication of Cu2O-Au/NG nanocomposites for sensitive electrochemical determination of rutin”, Journal of Electroanalytical Chemistry, 786, 20–27.
  • Liu, X., Zhao, X., Lu, X. (2010). “Electrochemical behavior of rutin on a multi-walled carbon nanotube and ionic liquid composite film modified electrode”, Colloids and Surfaces B: Biointerfaces, 81, 344–349.
  • Magarelli, G., Lima, L. H. C., da Silva, J. G., SouzaDe, J. R., de Castro, C. S. P. (2014). “Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods”, Microchemical Journal, 117, 149–155.
  • Marti, R., Valcarcel, M., Herrero-Martinez, J. M., Cebello-Cornejo, J., Rosello, S. (2017). “Simultaneous determination of main phenolic acids and flavonoids in tomato by micellar electrokinetic capillary electrophoresis”, Food Chemistry, 221, 439–446.
  • Mesquita E., Monteiro M. (2018). “Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice”, Food Research International, 106, 54–63.
  • Niu, X., Weng, W., Yin, C., Niu, Y., Li, G., Dong, R., Men, Y., Sun, W. (2018). “Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin”, Journal of Electroanalytical Chemistry, 811, 78–83.
  • Peng, L, Q., Li, Q., Chang, Y. X., An, M., Yang, R., Tan, Z., Hao, J., Cao, J., Xu, J. J., Hu, S. S. (2016). “Determination of natural phenols in olive fruits by chitosan assistedmatrix solid-phase dispersion microextraction and ultrahighperformance liquid chromatography with quadrupole time-of-flighttandem mass spectrometry”, Journal of Chromatography A, 1456, 68–76.
  • Sağlam, Ö., Dilgin, D. G., Ertek, B., Dilgin, Y. (2016). “Differential pulse voltammetric determination of eugenol at a pencil graphite electrode”, Materials Science and Engineering C, 60, 156–162.
  • Senguta, P., Sardar, P. S., Roy, P., Dasgusta, S., Bose, A. (2018). “Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques”, Journal of Photochemistry & Photobiology, B: Biology, 183, 101–110.
  • Sun, W., Wang, X., Zhu, H., Sun, X., Shi, F., Li, G., Sun, Z., (2013). “Graphene-MnO2 nanocomposite modified carbon ionic liquid electrode for the sensitive electrochemical detection of rutin”, Sensors and Actuators B, 178 443–449.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kuddusi Karaboduk

Yayımlanma Tarihi 24 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 1

Kaynak Göster

APA Karaboduk, K. (2019). Voltammetric Determination of Rutin by Using Disposable Pencil Graphite Electrode. Erzincan University Journal of Science and Technology, 12(1), 158-169. https://doi.org/10.18185/erzifbed.432836