Araştırma Makalesi
BibTex RIS Kaynak Göster

Aşındırıcı Su Jeti Sisteminde Farklı Parametrelerle Kesilmiş Lif Levhanın Pürüzlülük Özelliklerinin İncelenmesi

Yıl 2023, Cilt: 11 Sayı: 4, 1046 - 1054, 28.12.2023
https://doi.org/10.29109/gujsc.1367899

Öz

Bu çalışmada, aşındırıcı su jeti (ASJ) sisteminde farklı işleme parametreleri ile kesilen orta yoğunluklu lif levha (MDF) örneklerin kenar pürüzlülük özelliklerinin belirlenmesi amaçlanmıştır. 18, 36 ve 54 mm kalınlıklarında hazırlanmış olan lif levhalar, ASJ sistemi ile 50, 100 ve 200 mm/dk ilerleme hızı; 200, 300 ve 450 gr/dk aşındırıcı kütle akış oranı; 300 ve 380 MPa kesici sıvı basıncı uygulanarak kesilmiştir. Örneklerde kesim yüzeyi özellikleri Ra, Rq ve Rz pürüzlülük değerleri analiz edilerek belirlenmiştir. Çalışma sonuçlarına göre, lif levha kalınlığı ve ASJ ilerleme hızı artışına bağlı olarak pürüzlülük özellikleri de artmıştır. Diğer taraftan, aşındırıcı miktarı ve kesici sıvı basıncındaki artış ile pürüzlülük değerleri genel olarak azalma eğilimi göstermiştir. Ancak, örneklerin pürüzlülük özelliklerinde levha kalınlığı ve ASJ ilerleme hızı parametreleri birinci derecede öneme sahipken, aşındırıcı akış oranı ve kesici sıvı basıncı parametrelerinin daha az bir öneme sahip olduğu belirlenmiştir.

Destekleyen Kurum

Düzce Üniversitesi

Proje Numarası

Düzce Üniversitesi BAP-2017.07.01.521

Teşekkür

Bu çalışma Düzce Üniversitesi BAP-2017.07.01.521 numaralı Bilimsel Araştırma Projesiyle desteklenmiştir.

Kaynakça

  • [1] Pelit H., Yaman Ö., Influence of processing parameters on the surface roughness of solid wood cut by abrasive water jet, BioResources, 15 (2020), 6135-6148.
  • [2] Kminiak R., Gaff M., Fabrication of structural joinery items of solid wood by the mean of abrasive water jet method, Wood Research, 59 (2014), 499-507.
  • [3] Wang Z., An investigation on water jet machining for hardwood floors, European Journal of Wood and Wood Products, 70 (2012), 55-59.
  • [4] Barcík Š., Kvietková M., Aláč P., Effect of the chosen parameters on deflection angle between cutting sides during the cutting of agglomerated materials by water jet, Wood Research, 56 (2011), 577-588.
  • [5] Kvietkova M., Barcík Š., Bomba J., Aláč P., Impact of chosen parameters on surface undulation during the cutting of agglomerated materials with an abrasive water jet, Drewno: Prace Naukowe, Doniesienia, Komunikaty, 57 (2014), 111-123.
  • [6] Li R., Ekevad M., Guo X., Cao P., Wang J., Chen Q., Xue H., Pressure, feed rate, and abrasive mass flow rate influence on surface roughness for recombinant bamboo abrasive water jet cutting, BioResources, 10 (2015), 1998-2008.
  • [7] Oh T.M., Cho G.C., Characterization of effective parameters in abrasive water jet rock cutting, Rock Mechanics and Rock Engineering, 47 (2014), 745-756.
  • [8] Saraçyakupoğlu T. (2012). Aşındırıcı Su Jeti ile Kesmede Malzeme, Basınç, İlerleme Hızı ve Su Jeti Çapının Yüzey Kalitesine Etkisinin Analizi, Doktora Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • [9] Sreekesh K., Govindan P., A review on abrasive water jet cutting, International Journal of Recent Advances in Mechanical Engineering, 3 (2014), 153-158.
  • [10] Li M., Cao Y., Wang Z., Wang Y., Optimization and analysis of processing parameters of wooden crafts based on ultra-high pressure water jet method, Wood Research, 63 (2018), 117-126.
  • [11] Akkurt A., Waterjet cutting systems and assessment of their industrial applications, Journal of Polytechnic, 7 (2004), 129-139.
  • [12] Barcík Š., Kvietková M., Kminiak R., Aláč P., Optimization of cutting process of medium density fibreboards by the abrasive water-jet, Drvna Industrija, 62 (2011), 263-268.
  • [13] Kvietková M., Topography of material made by the application of abrasive water jet technology, Journal of Forest Science, 60 (2014), 318-323.
  • [14] Gerencsér K., Bejó L., Investigations into the water jet cutting of solid wood, Wood Research, 52 (2007), 57-64.
  • [15] Ábrahám J., Bak M., Németh R., The effect of high pressure water jet on the surface quality of wood, Pro Ligno, 11 (2015), 471-477.
  • [16] Hou R., Huang C., Zhu H., Numerical simulation ultrahigh waterjet (WJ) flow field with the high-frequency velocity vibration at the nozzle inlet, The International Journal of Advanced Manufacturing Technology, 71 (2014), 1087-1092.
  • [17] Li M., Xie W., Wang C.X., Cao Y., Wang Z., Parameters optimization for ultrahigh-pressure pure water and abrasive water jet of Pterocarpus macarocarpus Kurz processing, Wood Research, 63 (2018), 783-794.
  • [18] Çınar H., Yıldırım K., Okurcan E., Mobilya Üreten İşletmelerde Ahşap ve Kompozit Panel Tozlarının İnsan Sağlığı Üzerine Etkileri . Gazi University Journal of Science Part C: Design and Technology, 8 (2020), 909-921.
  • [19] Hutyrová Z., Ščučka J., Hloch S., Hlaváček, P., Zeleňák M., Turning of wood plastic composites by water jet and abrasive water jet, The International Journal of Advanced Manufacturing Technology, 84 (2016), 1615-1623.
  • [20] Kılıç M., Effects of machining methods on the surface roughness values of Pinus nigra Arnold wood, BioResources, 10 (2015), 5554-5562.
  • [21] Pinkowski G., Szymański W., Krauss A., Stefanowski S., Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species, BioResources, 13 (2018), 6952-6962.
  • [22] Richter K., Feist W.C., Knaebe T.K., The effect of surface roughness on the performance of finishes. Part 1. Roughness characterization and stain performance, Forest Products Journal, 45 (1995), 91-97.
  • [23] Hiziroğlu S., Zhong Z.W., Ong W.K., Evaluating of bonding strength of pine, oak and nyatoh wood species related to their surface roughness, Measurement, 49 (2014), 397-400.
  • [24] Söğütlü C., Nzokou P., Koc I., Tutgun R., Döngel N., The effects of surface roughness on varnish adhesion strength of wood materials, Journal of Coatings Technology and Research, 13 (2016), 863-870.
  • [25] Salca E.A., Krystofiak T., Lis B., Evaluation of selected properties of alder wood as functions of sanding and coating, Coatings, 7 (2017), 1-10.
  • [26] Söğütlü C., Determination of the effect of surface roughness on the bonding strength of wooden materials, BioResources, 12 (2017), 1417-1429.
  • [27] TS EN ISO 21920-2 (2022). Geometrik ürün özellikleri (GPS) - Yüzey yapısı: Profil - Bölüm 2: Terimler, tanımlar ve yüzey yapısı parametreleri, Türk Standardları Enstitüsü, Ankara.
  • [28] Ohlsson L. (1995). The Theory and Practice of Abrasive Water Jet Cutting, Ph.D. Dissertation, Division of Materials Processing, Lulea Universıty of Technolagy, Lulea, Sweden.
  • [29] Karakurt İ., Aydın G., Aydıner K., Effect of cutting parameters on the surface roughness of granite in abrasive waterjet cutting, Journal of the Earth Sciences Application and Research Centre of Hacettepe University, 31 (2010), 99-110.
  • [30] Akkurt A., Kulekci M.K., Seker U., Ercan F., Effect of feed rate on surface roughness in abrasive waterjet cutting applications, Journal of Materials Processing Technology, 147 (2004), 389-396.
  • [31] Hascalik A., Çaydaş U., Gürün H., Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy, Materials & Design, 28 (2007), 1953-1957.
  • [32] Aydın G., Karakurt I., Aydıner K., An investigation on surface roughness of granite machined by abrasive water jet, Bulletin of Materials Science, 34 (2011), 985-992.
  • [33] Shipway P.H., Fowler G., Pashby I.R., Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear, 258 (2005), 123-132.

Investigation of Roughness Properties of Fiberboard Cut with Different Parameters in Abrasive Water Jet System

Yıl 2023, Cilt: 11 Sayı: 4, 1046 - 1054, 28.12.2023
https://doi.org/10.29109/gujsc.1367899

Öz

In this study, it was aimed to determine the edge roughness properties of medium density fiberboard (MDF) samples cut with different processing parameters in the abrasive water jet (AWJ) system. Fiberboards with thicknesses of 18, 36 and 54 mm were cut with ASJ system at feed rates of 50, 100 and 200 mm/min; abrasive mass flow rates of 200, 300 and 450 g/min; cutting liquid pressures of 300 and 380 MPa. Cutting surface properties of the samples were determined by analyzing Ra, Rq and Rz roughness values. According to the results of the study, roughness properties increased due to the increase in fiberboard thickness and AWJ feed rate. On the other hand, roughness values generally showed a decreasing trend with the increase in abrasive amount and cutting liquid pressure. However, it was determined that the sheet thickness and AWJ feed rate parameters were of primary importance in the roughness properties of the samples, while the abrasive flow rate and cutting liquid pressure parameters were of less importance.

Proje Numarası

Düzce Üniversitesi BAP-2017.07.01.521

Kaynakça

  • [1] Pelit H., Yaman Ö., Influence of processing parameters on the surface roughness of solid wood cut by abrasive water jet, BioResources, 15 (2020), 6135-6148.
  • [2] Kminiak R., Gaff M., Fabrication of structural joinery items of solid wood by the mean of abrasive water jet method, Wood Research, 59 (2014), 499-507.
  • [3] Wang Z., An investigation on water jet machining for hardwood floors, European Journal of Wood and Wood Products, 70 (2012), 55-59.
  • [4] Barcík Š., Kvietková M., Aláč P., Effect of the chosen parameters on deflection angle between cutting sides during the cutting of agglomerated materials by water jet, Wood Research, 56 (2011), 577-588.
  • [5] Kvietkova M., Barcík Š., Bomba J., Aláč P., Impact of chosen parameters on surface undulation during the cutting of agglomerated materials with an abrasive water jet, Drewno: Prace Naukowe, Doniesienia, Komunikaty, 57 (2014), 111-123.
  • [6] Li R., Ekevad M., Guo X., Cao P., Wang J., Chen Q., Xue H., Pressure, feed rate, and abrasive mass flow rate influence on surface roughness for recombinant bamboo abrasive water jet cutting, BioResources, 10 (2015), 1998-2008.
  • [7] Oh T.M., Cho G.C., Characterization of effective parameters in abrasive water jet rock cutting, Rock Mechanics and Rock Engineering, 47 (2014), 745-756.
  • [8] Saraçyakupoğlu T. (2012). Aşındırıcı Su Jeti ile Kesmede Malzeme, Basınç, İlerleme Hızı ve Su Jeti Çapının Yüzey Kalitesine Etkisinin Analizi, Doktora Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • [9] Sreekesh K., Govindan P., A review on abrasive water jet cutting, International Journal of Recent Advances in Mechanical Engineering, 3 (2014), 153-158.
  • [10] Li M., Cao Y., Wang Z., Wang Y., Optimization and analysis of processing parameters of wooden crafts based on ultra-high pressure water jet method, Wood Research, 63 (2018), 117-126.
  • [11] Akkurt A., Waterjet cutting systems and assessment of their industrial applications, Journal of Polytechnic, 7 (2004), 129-139.
  • [12] Barcík Š., Kvietková M., Kminiak R., Aláč P., Optimization of cutting process of medium density fibreboards by the abrasive water-jet, Drvna Industrija, 62 (2011), 263-268.
  • [13] Kvietková M., Topography of material made by the application of abrasive water jet technology, Journal of Forest Science, 60 (2014), 318-323.
  • [14] Gerencsér K., Bejó L., Investigations into the water jet cutting of solid wood, Wood Research, 52 (2007), 57-64.
  • [15] Ábrahám J., Bak M., Németh R., The effect of high pressure water jet on the surface quality of wood, Pro Ligno, 11 (2015), 471-477.
  • [16] Hou R., Huang C., Zhu H., Numerical simulation ultrahigh waterjet (WJ) flow field with the high-frequency velocity vibration at the nozzle inlet, The International Journal of Advanced Manufacturing Technology, 71 (2014), 1087-1092.
  • [17] Li M., Xie W., Wang C.X., Cao Y., Wang Z., Parameters optimization for ultrahigh-pressure pure water and abrasive water jet of Pterocarpus macarocarpus Kurz processing, Wood Research, 63 (2018), 783-794.
  • [18] Çınar H., Yıldırım K., Okurcan E., Mobilya Üreten İşletmelerde Ahşap ve Kompozit Panel Tozlarının İnsan Sağlığı Üzerine Etkileri . Gazi University Journal of Science Part C: Design and Technology, 8 (2020), 909-921.
  • [19] Hutyrová Z., Ščučka J., Hloch S., Hlaváček, P., Zeleňák M., Turning of wood plastic composites by water jet and abrasive water jet, The International Journal of Advanced Manufacturing Technology, 84 (2016), 1615-1623.
  • [20] Kılıç M., Effects of machining methods on the surface roughness values of Pinus nigra Arnold wood, BioResources, 10 (2015), 5554-5562.
  • [21] Pinkowski G., Szymański W., Krauss A., Stefanowski S., Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species, BioResources, 13 (2018), 6952-6962.
  • [22] Richter K., Feist W.C., Knaebe T.K., The effect of surface roughness on the performance of finishes. Part 1. Roughness characterization and stain performance, Forest Products Journal, 45 (1995), 91-97.
  • [23] Hiziroğlu S., Zhong Z.W., Ong W.K., Evaluating of bonding strength of pine, oak and nyatoh wood species related to their surface roughness, Measurement, 49 (2014), 397-400.
  • [24] Söğütlü C., Nzokou P., Koc I., Tutgun R., Döngel N., The effects of surface roughness on varnish adhesion strength of wood materials, Journal of Coatings Technology and Research, 13 (2016), 863-870.
  • [25] Salca E.A., Krystofiak T., Lis B., Evaluation of selected properties of alder wood as functions of sanding and coating, Coatings, 7 (2017), 1-10.
  • [26] Söğütlü C., Determination of the effect of surface roughness on the bonding strength of wooden materials, BioResources, 12 (2017), 1417-1429.
  • [27] TS EN ISO 21920-2 (2022). Geometrik ürün özellikleri (GPS) - Yüzey yapısı: Profil - Bölüm 2: Terimler, tanımlar ve yüzey yapısı parametreleri, Türk Standardları Enstitüsü, Ankara.
  • [28] Ohlsson L. (1995). The Theory and Practice of Abrasive Water Jet Cutting, Ph.D. Dissertation, Division of Materials Processing, Lulea Universıty of Technolagy, Lulea, Sweden.
  • [29] Karakurt İ., Aydın G., Aydıner K., Effect of cutting parameters on the surface roughness of granite in abrasive waterjet cutting, Journal of the Earth Sciences Application and Research Centre of Hacettepe University, 31 (2010), 99-110.
  • [30] Akkurt A., Kulekci M.K., Seker U., Ercan F., Effect of feed rate on surface roughness in abrasive waterjet cutting applications, Journal of Materials Processing Technology, 147 (2004), 389-396.
  • [31] Hascalik A., Çaydaş U., Gürün H., Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy, Materials & Design, 28 (2007), 1953-1957.
  • [32] Aydın G., Karakurt I., Aydıner K., An investigation on surface roughness of granite machined by abrasive water jet, Bulletin of Materials Science, 34 (2011), 985-992.
  • [33] Shipway P.H., Fowler G., Pashby I.R., Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear, 258 (2005), 123-132.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ahşap Esaslı Kompozitler, Ahşap Fiziği ve Mekaniği
Bölüm Tasarım ve Teknoloji
Yazarlar

Hüseyin Pelit 0000-0002-5706-473X

Özkan Yaman Bu kişi benim 0009-0003-4249-7588

Proje Numarası Düzce Üniversitesi BAP-2017.07.01.521
Erken Görünüm Tarihi 23 Kasım 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 28 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Pelit, H., & Yaman, Ö. (2023). Aşındırıcı Su Jeti Sisteminde Farklı Parametrelerle Kesilmiş Lif Levhanın Pürüzlülük Özelliklerinin İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 11(4), 1046-1054. https://doi.org/10.29109/gujsc.1367899

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526