Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells

Yıl 2023, Cilt: 9 Sayı: 2, 344 - 351, 31.12.2023
https://doi.org/10.29132/ijpas.1304265

Öz

Copper oxide (CuO NPs) nanoparticles were synthesized by green synthesis and characterized by UV-Vis spectroscopy, FT-IR spectroscopy, SEM and EDX analysis. The shape of the CuO nanoparticles obtained is approximately spherical and their particle sizes range from 40 to 85 nm. According to the experimental results, two peaks at 305 and 318 nm in the 270-400 nm range in the UV-Vis absorption spectrum and one peak at 536 cm-1 in the FT-IR spectrum confirm the presence of copper oxide nanoparticles. In addition, the presence of biomolecules in aesculus hippocastanum(horse chestnut) extract on the surface of the copper oxide nanoparticles synthesized by green synthesis was determined by the peaks seen in the range of 3300 cm-1 - 1000 cm-1 in the FTIR spectrum. The images, shape and size of the copper oxide nanoparticles were determined by SEM, and the weight percent of the elements were determined by EDX. PC3 prostate cell lines were used in the study. After measuring the cytotoxic effect of the agents used in the study on prostate cancer cells, the apoptotic effect of this effect was determined by Hoechst/propidium iodide (HOPI) staining. Graphpad prism program was used to compare all parameters between groups, and "one-way analysis of variance" (one-way ANOVA) method and dunnet's test were applied to test whether there was any difference between at least two groups. It has been determined that the drug obtained from copper oxide nanoparticles has a cytotoxic effect on PC3 prostate cancer cells and this effect occurs through the apoptosis pathway.

Kaynakça

  • Aruna, P. W., Li, S., Benjamin, C. C. and Nidal, A.-Z. (2015). Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles. AIMS Materials Science, 3(1), 35-50. Danhalilu, R., Kankara, A. I. and Batagarawa, S. M. (2019). Green Synthesis of Metallic Nanoparticles Using Leaf Extract of Calotropis Species and their Applications: A Review. Current Journal of Applied Science and Technology, 32(2), 1-10.
  • Das, D., Nath, B. C., Phukon, P. and Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 430-433.
  • Erdoğan, O., Pasa, S. and Cevik, O. (2021). Green Synthesis and Characterization of Anticancer Effected Silver Nanoparticles with Silverberry (Elaeagnus angustifolia) Fruit Aqueous Extract. International Journal of Pure and Applied Sciences, 7(3), 391-400.
  • Erdoğan, S.L., Tekgül, Y. and Koç, G. Ç. (2022). Farklı Meyve Çekirdekleri Yağlarının Keklerin Kalite Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences, 8(2), 342-350.
  • Gnanavel, V., Palanichamy, V. and Roopan, S. M. (2017). Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). Journal of Photochemistry and Photobiology B: Biology, 171, 133-138.
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
  • Jeronsia, J. E., Raj, D. V., Joseph, L. A., Rubini, K. and Das, S. J. (2016). In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast cancer Michigan Cancer Foundation-7 cells. Journal of Medical Sciences, 36(4), 145.
  • Kalaiarasi, A., Sankar, R., Anusha, C., Saravanan, K., Aarthy, K., Karthic, S., . . . Ravikumar, V. (2018). Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnology letters, 40(2), 249-256.
  • Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O. and Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248.
  • Mittal, A. K., Chisti, Y. and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356.
  • Nagajyothi, P., Muthuraman, P., Sreekanth, T., Kim, D. H. and Shim, J. (2017). Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian journal of chemistry, 10(2), 215-225.
  • Naz, S., Tabassum, S., Freitas Fernandes, N., Mujahid, M., Zia, M. and Carcache de Blanco, E. J. (2020). Anticancer and antibacterial potential of Rhus punjabensis and CuO nanoparticles. Natural product research, 34(5), 720-725.
  • Nethravathi, P., Kumar, M. P., Suresh, D., Lingaraju, K., Rajanaika, H., Nagabhushana, H. and Sharma, S. (2015). Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Materials Science in Semiconductor Processing, 33, 81-88.
  • Padil, V. V. T. and Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International journal of nanomedicine, 8, 889-898.
  • Reddy, K. R. (2017). Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, 553-557.
  • Rehana, D., Mahendiran, D., Kumar, R. S. and Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89, 1067-1077.
  • Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S. and Ravikumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234-239.
  • Shankar, S., Wang, L.-F. and Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate polymers, 169, 264-271.
  • Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P. and Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321-325.
  • Sivaraj, R., Rahman, P. K., Rajiv, P., Narendhran, S. and Venckatesh, R. (2014). Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 255-258.
  • Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.
  • Tri, P. N., Rtimi, S. and Ouellet-Plamondon, C. M. (2019). Nanomaterials-Based Coatings: Fundamentals and Applications. Elsevier.
  • Wang, F., Li, H., Yuan, Z., Sun, Y., Chang, F., Deng, H., Li, H. (2016). High sensitive gas sensor based on CuO nanoparticles synthetized by sol-gel method. RSC Advances, Cambridge, 79343.
  • Wang, F., Tao, W., Zhao, M., Xu, M., Yang, S., Sun, Z., Song, X. (2011). Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 509(41), 9798-9803.
  • Willems, v. d. W. (2005). Roadmap report on nanoparticles. W&W Espana sl, Barcelona, Spain, 157.
  • Yugandhar, P., Vasavi, T., Devi, P. U. M. and Savithramma, N. (2017). Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience, 7(7), 417-427.
  • Zaman, S., Zainelabdin, A., Amin, G., Nur, O. and Willander, M. (2012). Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. Journal of Physics and Chemistry of Solids, 73(11), 1320-1325.
Yıl 2023, Cilt: 9 Sayı: 2, 344 - 351, 31.12.2023
https://doi.org/10.29132/ijpas.1304265

Öz

Destekleyen Kurum

Ulubatlı Hasan Anadolu lisesi

Kaynakça

  • Aruna, P. W., Li, S., Benjamin, C. C. and Nidal, A.-Z. (2015). Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles. AIMS Materials Science, 3(1), 35-50. Danhalilu, R., Kankara, A. I. and Batagarawa, S. M. (2019). Green Synthesis of Metallic Nanoparticles Using Leaf Extract of Calotropis Species and their Applications: A Review. Current Journal of Applied Science and Technology, 32(2), 1-10.
  • Das, D., Nath, B. C., Phukon, P. and Dolui, S. K. (2013). Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 430-433.
  • Erdoğan, O., Pasa, S. and Cevik, O. (2021). Green Synthesis and Characterization of Anticancer Effected Silver Nanoparticles with Silverberry (Elaeagnus angustifolia) Fruit Aqueous Extract. International Journal of Pure and Applied Sciences, 7(3), 391-400.
  • Erdoğan, S.L., Tekgül, Y. and Koç, G. Ç. (2022). Farklı Meyve Çekirdekleri Yağlarının Keklerin Kalite Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences, 8(2), 342-350.
  • Gnanavel, V., Palanichamy, V. and Roopan, S. M. (2017). Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). Journal of Photochemistry and Photobiology B: Biology, 171, 133-138.
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
  • Jeronsia, J. E., Raj, D. V., Joseph, L. A., Rubini, K. and Das, S. J. (2016). In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast cancer Michigan Cancer Foundation-7 cells. Journal of Medical Sciences, 36(4), 145.
  • Kalaiarasi, A., Sankar, R., Anusha, C., Saravanan, K., Aarthy, K., Karthic, S., . . . Ravikumar, V. (2018). Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnology letters, 40(2), 249-256.
  • Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O. and Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248.
  • Mittal, A. K., Chisti, Y. and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356.
  • Nagajyothi, P., Muthuraman, P., Sreekanth, T., Kim, D. H. and Shim, J. (2017). Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian journal of chemistry, 10(2), 215-225.
  • Naz, S., Tabassum, S., Freitas Fernandes, N., Mujahid, M., Zia, M. and Carcache de Blanco, E. J. (2020). Anticancer and antibacterial potential of Rhus punjabensis and CuO nanoparticles. Natural product research, 34(5), 720-725.
  • Nethravathi, P., Kumar, M. P., Suresh, D., Lingaraju, K., Rajanaika, H., Nagabhushana, H. and Sharma, S. (2015). Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Materials Science in Semiconductor Processing, 33, 81-88.
  • Padil, V. V. T. and Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International journal of nanomedicine, 8, 889-898.
  • Reddy, K. R. (2017). Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, 553-557.
  • Rehana, D., Mahendiran, D., Kumar, R. S. and Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89, 1067-1077.
  • Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K. S. and Ravikumar, V. (2014). Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 44, 234-239.
  • Shankar, S., Wang, L.-F. and Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate polymers, 169, 264-271.
  • Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P. and Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321-325.
  • Sivaraj, R., Rahman, P. K., Rajiv, P., Narendhran, S. and Venckatesh, R. (2014). Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 255-258.
  • Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.
  • Tri, P. N., Rtimi, S. and Ouellet-Plamondon, C. M. (2019). Nanomaterials-Based Coatings: Fundamentals and Applications. Elsevier.
  • Wang, F., Li, H., Yuan, Z., Sun, Y., Chang, F., Deng, H., Li, H. (2016). High sensitive gas sensor based on CuO nanoparticles synthetized by sol-gel method. RSC Advances, Cambridge, 79343.
  • Wang, F., Tao, W., Zhao, M., Xu, M., Yang, S., Sun, Z., Song, X. (2011). Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 509(41), 9798-9803.
  • Willems, v. d. W. (2005). Roadmap report on nanoparticles. W&W Espana sl, Barcelona, Spain, 157.
  • Yugandhar, P., Vasavi, T., Devi, P. U. M. and Savithramma, N. (2017). Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience, 7(7), 417-427.
  • Zaman, S., Zainelabdin, A., Amin, G., Nur, O. and Willander, M. (2012). Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. Journal of Physics and Chemistry of Solids, 73(11), 1320-1325.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehran Aksel 0000-0002-3942-2257

Dursun Karaağaç 0000-0003-3504-6765

Tolga Kaya 0009-0009-4288-9673

Fatih Ağırakar 0009-0002-0584-0941

Muhammed Buğra Kaya 0009-0002-9355-7408

Pınar Kızılcık 0009-0003-3426-7707

Alperen Kuru 0009-0009-9369-4083

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 31 Mayıs 2023
Kabul Tarihi 28 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Aksel, M., Karaağaç, D., Kaya, T., Ağırakar, F., vd. (2023). Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells. International Journal of Pure and Applied Sciences, 9(2), 344-351. https://doi.org/10.29132/ijpas.1304265
AMA Aksel M, Karaağaç D, Kaya T, Ağırakar F, Kaya MB, Kızılcık P, Kuru A. Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells. International Journal of Pure and Applied Sciences. Aralık 2023;9(2):344-351. doi:10.29132/ijpas.1304265
Chicago Aksel, Mehran, Dursun Karaağaç, Tolga Kaya, Fatih Ağırakar, Muhammed Buğra Kaya, Pınar Kızılcık, ve Alperen Kuru. “Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells”. International Journal of Pure and Applied Sciences 9, sy. 2 (Aralık 2023): 344-51. https://doi.org/10.29132/ijpas.1304265.
EndNote Aksel M, Karaağaç D, Kaya T, Ağırakar F, Kaya MB, Kızılcık P, Kuru A (01 Aralık 2023) Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells. International Journal of Pure and Applied Sciences 9 2 344–351.
IEEE M. Aksel, “Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells”, International Journal of Pure and Applied Sciences, c. 9, sy. 2, ss. 344–351, 2023, doi: 10.29132/ijpas.1304265.
ISNAD Aksel, Mehran vd. “Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells”. International Journal of Pure and Applied Sciences 9/2 (Aralık 2023), 344-351. https://doi.org/10.29132/ijpas.1304265.
JAMA Aksel M, Karaağaç D, Kaya T, Ağırakar F, Kaya MB, Kızılcık P, Kuru A. Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells. International Journal of Pure and Applied Sciences. 2023;9:344–351.
MLA Aksel, Mehran vd. “Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells”. International Journal of Pure and Applied Sciences, c. 9, sy. 2, 2023, ss. 344-51, doi:10.29132/ijpas.1304265.
Vancouver Aksel M, Karaağaç D, Kaya T, Ağırakar F, Kaya MB, Kızılcık P, Kuru A. Effect of Copper Oxide Nanoparticles on Prostate Cancer PC3 Cells. International Journal of Pure and Applied Sciences. 2023;9(2):344-51.

154501544915448154471544615445