Araştırma Makalesi
BibTex RIS Kaynak Göster

Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi

Yıl 2024, Cilt: 10 Sayı: 1, 60 - 79, 15.03.2024
https://doi.org/10.28979/jarnas.1317247

Öz

Dünyanın en büyük alkali gölü olan Van Gölü, fitoplankton (mikro-alg) içeriği açısından düşük organik üretimli (oligotrofik) bir yapıya sahiptir. Besin zincirinin ilk halkasını oluşturan fitoplankton yoğunluğunun belirlenmesinde en sık kullanılan parametrelerden biri klorofil-a pigmentidir. Fitoplankton ve dolayısıyla klorofil-a yoğunlaşmaları aynı zamanda su kalitesinin evsel, tarımsal ve sanayi atıkları gibi insan kaynaklı kirliliğin takibinde de kullanılmaktadır. Bu çalışmada, Van Gölü’ndeki klorofil-a konsantrasyonlarının dağılım haritaları, literatürdeki 1983-84, 2002 ve 2014 yersel ölçme verileri (spektrofotometrik yöntem ile), uydu verisi ve Coğrafi Bilgi Sistemi (CBS) metotları kullanılarak Van Gölü’ndeki temsiliyet kapasitesi değerlendirilmiştir. Buna göre, klorofil-a dağılımları mekânsal olarak değişiklik göstermektedir. Gölün kuzeydoğu ve doğusundaki klorofil-a yoğunluğunun, gölün batı kesimine göre oldukça yüksek olduğu görülmektedir. Saha çalışmaları ile 2014 yılı klorofil-a yersel ölçmelerden elde edilen klorofil-a değerleri (1.7-7.8 mg/m3) kullanılarak Landsat-8 OLI algılayıcısına ait mavi bantın (562-443 nm arası dalga boyu) yeşil banta (562-482 nm arası dalga boyu) yansıma oranı ile elde edilen klorofil-a konsantrasyonunun ölçme hatalarının içerisinde kaldığı (karesel ortalama hata) ve Landsat-8 OLI algılayıcısının Van Gölü’ndeki klorofil-a konsantrasyonlarını haritalamak için uygun olduğu belirlenmiştir. Ayrıca, Van Gölü’nün farklı lokasyonlarında 1983-84 ve 2002 yıllarında klorofil-a tesbiti için yapılan yersel ölçmeler kullanılarak, CBS’de jeo-istatistik analizler gerçekleştirilmiştir. Bu çalışma ile birlikte, Van Gölü’ndeki klorofil-a’nın mekânsal dağılımlarının izlenmesinde CBS yöntemiyle kıyaslandığında uydu verisinin temsiliyetinin yeterli doğrulukta tahmin edilebileceği ortaya konulmuştur.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

112C001

Teşekkür

Bu çalışmada kullanılan Van Gölü 2014 seferi verileri, Avrupa Birliği Marie Curie Cofund ‘Environmental impacts of subaerial volcanic eruptions on alkaline lakes–A case study on Lake Van in eastern Turkey (EVOLVAN) başlıklı projesi ve TÜBİTAK 112C001 nolu proje desteği ile gerçekleştirilmiştir. Van Gölü batimetri verileri için, Dr. Deniz Çukur’a ve ICDP PaleoVan Projesi ekibine de teşekkür ederiz.

Kaynakça

  • A. Reimer, G. Landmann, S. Kempe, Lake Van, Eastern Anatolia, hydrochemistry and history, Aquatic Geochemistry 15 (1–2) (2009) 195–222.
  • S. Kempe, J. Kazmierczak, G. Landmann, T. Konuk, A. Reimer, A. Lipp, Largest known microbialites discovered in Lake Van, Turkey, Nature 349 (6310) (1991) 605–608.
  • L. Daoji, D. Daler, Ocean pollution from land-based sources: East China Sea, China, Ambio 33 (1/2) (2004) 107–113.
  • S. Garrido, R. Ben-Hamadou, P. B. Oliveira, M. E. Cunha, M. A. Chícharo, C. D. Van Der Lingen, Diet and feeding intensity of sardine Sardina pilchardus: Correlation with satellite-derived chlorophyll data, Marine Ecology Progress Series 354 (2008) 245–256.
  • N. Olgun, S. Duggen, B. Langmann, M. Hort, C. F. Waythomas, L. Hoffmann, P. Croot, Geochemical evidence of oceanic iron fertilization by the Kasatochi volcanic eruption in 2008 and the potential impacts on Pacific sockeye salmon, Marine Ecology Progress Series 488 (2013) 81–88.
  • A. Tuzcu Kokal, N. Olgun, N. Musaoğlu, Detection of mucilage phenomenon in the Sea of Marmara by using multi-scale satellite data, Environmental Monitoring and Assessment 194 (585) (2022) 194–585.
  • X. M. Chuai, X. Chen, L. Yang, J. Zeng, A. Miao, H. Zhao, Effects of climatic changes and anthropogenic activities on lake eutrophication in different ecoregions, International Journal of Environmental Science and Technology 9 (2012) 503–514.
  • M. Nazari-Sharabian, S. Ahmad, M. Karakouzian, Climate change and eutrophication: A short review, Engineering, Technology and Applied Science Research 8 (6) (2018) 3668–3672.
  • B. Bardakcı Şener, E. M. Tıraşın, A. Ünlüoğlu, The influence of lake level fluctuations on fisheries in Lake Van, Journal of Limnology and Freshwater Fisheries Research, 7 (2) (2021) 157–165.
  • O. Holm-Hansen, M. Kahru, C. D. Hewes, S. Kawaguchi, T. Kameda, V. A. Sushin, I. Krasovski, J. Priddle, R. Korb, R. P. Hewitt, B. G. Mitchell, Temporal and spatial distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both shipboard measurements and satellite data, Deep-Sea Research Part II: Topical Studies in Oceanography, 51 (12-13) (2004) 1323–1331.
  • X. J. Wang, R. M. Liu, Spatial analysis and eutrophication assessment for chlorophyll a in Taihu Lake, Environmental Monitoring and Assessment 101 (1–3) (2005) 167–174.
  • A. Abdul-Hadi, S. Mansor, B. Pradhan, C. K. Tan, Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon - A remote sensing study, Environmental Monitoring and Assessment 185 (5) (2013) 3977–3991.
  • C. Giardino, M. Bresciani, D. Stroppiana, A. Oggioni, G. Morabito, Optical remote sensing of lakes: An overview on Lake Maggiore, Journal of Limnology 73 (1) (2014) 201–214.
  • N. T. T. Ha, K. Koike, M. T. Nhuan, B. D. Canh, N. T. P. Thao, M. Parsons, Landsat 8/OLI Two bants ratio algorithm for chlorophyll-a concentration mapping in hypertrophic waters: An application to west lake in Hanoi (Vietnam), IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (11) (2017) 4919–4929.
  • R. C. Trinh, C. G. Fichot, M. M. Gierach, B. Holt, N. K. Malakar, G. Hulley, J. Smith, Application of Landsat 8 for monitoring impacts of wastewater discharge on coastal water quality, Frontiers in Marine Science 4 (2017) 17 pages.
  • C. Cheng, Y. Wei, G. Lv, N. Xu, Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations, Environmental Monitoring and Assessment 191 (84) (2019) 25 pages.
  • R. W. Johnson, R. C. Harriss, Remote sensing for water quality and biological measurements in coastal waters, Photogrammetric Engineering and Remote Sensing 46 (1) (1980) 77–85.
  • J. P. Verdin, Monitoring water quality conditions in a large Western reservoir with Landsat imagery (USA), Photogrammetric Engineering and Remote Sensing 51 (3) (1985) 343–353.
  • A. G. Dekker, S. W. M. Peters, The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the Netherlands, International Journal of Remote Sensing 14 (5) (1993) 799–821.
  • M. Mayo, A. Gitelson, Y. Z. Yacobi, Z. Ben-Avraham, Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper data, International Journal of Remote Sensing 16 (1) (1995) 175–182.
  • R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, T. Bridgeman, Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie, Remote Sensing of Environment 89 (3) (2004) 381–392.
  • A. N. Tyler, E. Svab, T. Preston, M. Présing, W. A. Kovács, Remote sensing of the water quality of shallow lakes: A mixture modeling approach to quantifying phytoplankton in water characterized by high-suspended sediment, International Journal of Remote Sensing 27 (8) (2006) 1521–1537.
  • T. P. Albright, D. J. Ode, Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data, Hydrobiologia 661 (1) (2011) 469–474.
  • J. Andrzej Urbanski, A. Wochna, I. Bubak, W. Grzybowski, K. Lukawska-Matuszewska, M. Łącka, S. Śliwińska, B. Wojtasiewicz, M. Zajączkowski, Application of Landsat 8 imagery to regional-scale assessment of lake water quality, International Journal of Applied Earth Observation and Geoinformation 51 (2016) 28–36.
  • J. Boucher, K. C. Weathers, H. Norouzi, B. Steele, Assessing the effectiveness of Landsat 8 chlorophyll-a retrieval algorithms for regional freshwater monitoring, Ecological Applications 28 (4) (2018) 1044–1054.
  • J. Lim, M. Choi, Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea, Environmental Monitoring and Assessment 187 (2015) Article Number 384 17 pages.
  • A. P. Yunus, J. Dou, N. Sravanthi, Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis, Remote Sensing Applications: Society and Environment 2 (2015) 11–25.
  • F. S. Y. Watanabe, E. Alcântara, T. W. P. Rodrigues, N. N. Imai, C. C. F. Barbosa, L. H. da S. Rotta, Estimation of chlorophyll-a concentration and the trophic state of the barra bonita hydroelectric reservoir using Landsat-8/OLI images, International Journal of Environmental Research and Public Health 12 (9) (2015) 10391–10417.
  • Z. Yang, Y. Anderson, Estimating chlorophyll-A concentration in a freshwater lake using landsat 8 imagery, Journal of Environment and Earth Science 6 (4) (2016) 134–142.
  • Y. M. Li, J. Z. Huang, Y. C. Wei, W. N. Lu, Inversing chlorophyll concentration of Taihu Lake by analytic model, Journal of Remote Sensing-Beijing 10 (2) (2006) 2–4.
  • R. P. Bukata, J. E. Bruton, J. H. Jerome, S. C. Jain, H. H. Zwick, Optical water quality model of Lake Ontario 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors, Applied Optics 20 (9) (1981) 1704–1714.
  • K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Vepsäläinen, T. Pyhälahti, Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons, Science of the Total Environment 268 (1–3) (2001) 59–77.
  • A. A. Gilerson, A. A. Gitelson, J. Zhou, D. Gurlin, W. Moses, I. Ioannou, S. A. Ahmed, Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near-infrared bants, Optics Express 18 (23) (2010) 24109–24125.
  • N. T. T. Ha, K. Koike, M. T. Nhuan, Improved accuracy of chlorophyll-a concentration estimates from MODIS Imagery using a two-bant ratio algorithm and geostatistics: As applied to the monitoring of eutrophication processes over Tien Yen Bay (Northern Vietnam), Remote Sensing 6 (1) (2013) 421–442.
  • F. Zhang, J. Li, Q. Shen, B. Zhang, C. Wu, Y. Wu, G. Wang, S. Wang, Z. Lu, Algorithms and schemes for chlorophyll-a estimation by remote sensing and optical classification for turbid lake Taihu, China, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (1) (2015) 350–364.
  • T. M. Lillesand, R. W. Kiefer, J. Chipman, Remote sensing and image interpretation, 7th edition, Wiley Company, United States, 2015.
  • M. H. Gholizadeh, A. M. Melesse, L. Reddi, A comprehensive review on water quality parameters estimation using remote sensing techniques, Sensors 16 (8) (2016) 1298 43 pages.
  • D. G. George, The airborne remote sensing of phytoplankton chlorophyll in the lakes and tarns of the English Lake District, International Journal of Remote Sensing 18 (9) (1997) 1961–1975.
  • R. M. Liu, X. J. Wang, C. H. Wang, Y. C. Jiang, X. W. Zhou, Application of geo-statistics in studying spatial distribution of chlorophyll a in lakes, Agro-environment Protection 20 (5) (2001) 308–310.
  • S. Tuğrul, G. Dumlu, A. Baştürk, C. İlhal, T. Balkaş, Van Gölü özümleme kapasitesinin saptanması ve evsel nitelikli atıksu arıtımı ve deşarjı optimizasyonu. Gebze-Kocaeli: TÜBİTAK-MAM ve İller Bankası Genel Müdürlüğü (0730018301) Yayın Numarası 145 (1984) 183 pages.
  • M. Cüreoğlu, Van Gölü yüzey sularında klorofil-a değişiminin seaWIFS görüntüleri ve yer ölçümleri ile izlenmesi, Master’s Thesis Van Yüzüncü Yıl University (2002) Van.
  • D. Cukur, S. Krastel, H. U. Schmincke, M. Sumita, Y. Tomonaga, M. N. Çağatay, Water level changes in Lake Van, Turkey, during the past ca. 600 ka: climatic, volcanic and tectonic controls, Journal of Paleolimnology 52 (3) (2014) 201–214.
  • M. Şenel, T. Ercan, 1:500.000 ölçekli Türkiye jeoloji haritaları serisi, Van paftası, 2nd Edition, Ankara: Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara, 2002.
  • M. Stockhecke, F. S. Anselmetti, A. F. Meydan, D. Odermatt, M. Sturm, The annual particle cycle in Lake Van (Turkey), Palaeogeography, Palaeoclimatology, Palaeoecology 333–334 (2012) 148–159.
  • F. Barlas Şimşek, M. N. Çağatay, Late Holocene high-resolution multi-proxy climate and environmental records from Lake Van, eastern Turkey, Quaternary International 486 (2018) 57–72.
  • M. N. Çağatay, N. Öğretmen, E. Damcı, M. Stockhecke, Ü. Sancar, K. K. Eriş, S. Özeren, Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey, Quaternary Science Reviews 104 (2014) 97–116.
  • T. Litt, N. Pickarski, G. Heumann, M. Stockhecke, P. C. Tzedakis, A 600,000-year long continental pollen record from Lake Van, eastern Anatolia (Turkey), Quaternary Science Reviews 104 (2014) (2014) 30–41.
  • E. Damcı, M. N Çağatay, Chronological evolution of some morphological, tectonic and volcanic features in Lake Van, based on correlation of seismic and core data, Quaternary International 486 (2018) 29–43.
  • A. Turan, A. Aldemir, Statistical assessment of seasonal variations in water quality for different regions in Lake Van (Türkiye), Environmental Monitoring and Assessment 195 (2023) Article Number 237 18 pages.
  • N. Olğun Kıyak, M. N. Çağatay, Environmental impacts of subaerial volcanic eruptions on alkaline lakes – A case study on Lake Van in eastern Turkey (EVOLVAN). TÜBİTAK (European Commission 7th Framework Programme funded Project-Marie Curie 2236 Co-funded Brain Circulation Scheme) TÜBİTAK (112C001) (2015).
  • E. T. Degens, H. K. Wong, S. Kempe, F. Kurtman, A geological study of lake van, Eastern Turkey, Geologische Rundschau 73 (2) (1984) 701–734.
  • M. Keskin, Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters 30 (24) (2003) 8046 4 pages.
  • A. M. C. Şengör, M. S. Özeren, M. Keskin, M. Sakinç, A. D. Özbakir, I. Kayan, Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens, Earth Science Reviews 90 (1-2) (2008) 1–48.
  • O. Tüysüz, Ş. C. Genç, U. Tarı, Van depremi kör bindirme fayının kırılmasının bir sonucu, Cumhuriyet Bilim Teknoloji Gazetesi 1285 (2011) 10–11.
  • F. Arikan, M. N. Deviren, O. Lenk, U. Sezen, O. Arikan, Observed Ionospheric Effects of 23 October 2011 Van, Turkey Earthquake, Geomatics, Natural Hazards, and Risk, 3 (1) (2012) 1–8.
  • A. Sağlam Selçuk, Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey, Geomorphology 270 (2016) 9–21.
  • M. Kadioğlu, Z. Şen, E. Batur, The greatest soda-water lake in the world and how it is influenced by climatic change, Annales Geophysicae 15 (11) (1997) 1489–1497.
  • G. Landmann, A. Reimer, S. Kempe, Climatically induced lake level changes at Lake Van, Turkey, during the Pleistocene/Holocene transition, Global Biogeochemical Cycles 10 (4) (1996) 797–808.
  • S. Kempe, G. Landmann, G. Müller, A floating varve chronology from the last glacial maximum terrace of Lake Van (Turkey), Zeitschrift für Geomorphologie, Supplementbant 126 (2002) 97–114.
  • C. Kuzucuoglu, A. Christol, D. Mouralis, A. F. Dogu, E. Akköprü, M. Fort, D. Brunstein, H. Zorer, M. Fontugne, M. Karabiyikoğlu, S. Scaillet, J. L. Reyss, H. Guillou, Formation of the Upper Pleistocene terraces of Lake Van (Turkey), Journal of Quaternary Science 25 (7) (2010) 1124–1137.
  • R. Nagalakshmi, K. Prasanna, S. Prakash Chandar, Water quality analysis using GIS interpolation method in Serthalaikadu Lagoon, east coast of India, Rasayan Journal of Chemistry 9 (4) (2016) 634–640.
  • E. Y. Wardani, Y. Wardiatno, S. B. Agus, Spatial distribution and biophysics chemistry characterization of Pearl Oyster farming in Semau Strait, East Nusa Tenggara, IOP Conference Series: Earth and Environmental Science 54 (2017) 012069 10 pages.
  • M. Küçükönder, E. Kalkan, K. Cırık, Kılavuzlu baraj gölü (Kahramanmaraş) su kalitesi ve Kanada su kalite indeks sınıfı, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 (1) (2022) 118–142.
  • D. Zimmerman, C. Pavlik, A. Ruggles, M. P. Armstrong, An experimental comparison of ordinary and universal kriging and inverse distance weighting, Mathematical Geology 31 (4) (1999) 375–390.
  • J. Li, L. Tian, Y. Wang, S. Jin, T. Li, X. Hou, Optimal sampling strategy of water quality monitoring at high dynamic lakes: A remote sensing and spatial simulated annealing integrated approach, Science of the Total Environment 777 (2021) 146113 14 pages.
  • E. Kim, S. H. Nam, C. H. Ahn, S. Lee, J. W Koo, T. M. Hwang, Comparison of spatial interpolation methods for distribution map an unmanned surface vehicle data for chlorophyll-a monitoring in the stream, Environmental Technology & Innovation 28 (2022) 102637 11 pages.
  • M. G. Allan, D. P. Hamilton, B. Hicks, L. Brabyn, Empirical and semi-analytical chlorophyll-a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat, Environmental Monitoring and Assessment 187 (2015) Article Number 364 24 pages.
  • K. Blix, K. Pálffy, V. R. Tóth, T. Eltoft, Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI, Water 10 (10) (2018) 1428 20 pages.
  • A. C. Blanco, A. Manuel, R. Jalbuena, K. Ticman, J. M. Medina, E. Gubatanga, A. Santos, R. Sta. Ana, E. Herrera, K. Nadaoka, Estimation of Chl-a concentration in Laguna Lake using Sentinel-3 OLCI images, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2020) 17–21.
  • C. D. Mobley, Estimation of the remote-sensing reflectance from above-surface measurements, Applied Optics 38 (36) (1999) 7442–7455.
  • C. Giardino, M. Pepe, P. A. Brivio, P. Ghezzi, E. Zilioli, Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery, Science of The Total Environment 268 (1-3) (2001) 19–29.
  • S. A. C. Nelson, P. A. Soranno, K. S. Cheruvelil, S. Batzli, D. Skole, Regional assessment of lake water clarity using satellite remote sensing, Journal of Limnology 62 (Suppl. 1) (2003) 27–32.
  • H. Wang, D. Zhao, L. Wang, F. Huang, Advance in remote sensing of water quality, Marine Environmental Science 31 (2) (2012) 285–288.
  • X. Wang, W. Yang, Water quality monitoring and evaluation using remote-sensing techniques in China: A systematic review, Ecosystem Health and Sustainability 5 (1) (2019) 47–56.
  • A. Morel, L. Prieur, Analysis of variations in ocean color, Limnology and Oceanography 22 (1977) 709–722.
  • H. R. Gordon, A. Y. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery, Springer-Verlag, New York, 1983.
  • K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, J. P. Cannizzaro, MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 Chlorophyll-a, University of South Florida (2003) Florida.
  • J. Blaustein, The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll, International Journal of Remote Sensing 13 (17) (1992) 3367–3373.
  • H. Luoheng, D. C. Rundquist, Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir, Remote Sensing of Environment 62 (3) (1997). 253–261.
  • J. F. Schalles, Y. Z. Yacobi, Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters, Ergebnisse Der Limnologie 55 (2000) 153–168.
  • G. Yu, W. Yang, B. Matsushita, R. Li, Y. Oyama, T. Fukushima, Remote estimation of chlorophyll-a in inland waters by a NIR-red-based algorithm: Validation in Asian Lakes, Remote Sensing 6 (4) (2014) 3492–3510.
  • D. C. Pierson, N. Strömbeck, A modeling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes, Geophysica 36 (1–2) (2000) 177–202.
  • J. F. Schalles, Optical remote sensing techniques to estimate phytoplankton chlorophyll-a concentrations in coastal waters with varying suspended matter and Cdom concentrations, Remote Sensing and Digital Image Processing 9 (2006) 27–79.
  • K. A. Hussein, K. Al Abdouli, D. T. Ghebreyesus, P. Petchprayoon, N. O. Al Hosani, H. Sharif, Spatiotemporal variability of chlorophyll-a and sea surface temperature, and their relationship with bathymetry over the coasts of UAE, Remote Sensing 13 (13) (2021) 2447 25 pages.

Monitoring the Chlorophyll-a Dynamics of Van Lake with Satellite Data and GIS

Yıl 2024, Cilt: 10 Sayı: 1, 60 - 79, 15.03.2024
https://doi.org/10.28979/jarnas.1317247

Öz

Lake Van, the world's largest alkaline lake, is known to be a low organic production (oligotrophic) lake in terms of phytoplankton (micro-algae). Chlorophyll-a (chl-a) pigment is one of the most frequently used parameters in determining the phytoplankton, which makes up the first link of the food chain in the lakes. Phytoplankton and hence chlorophyll-a concentrations are also used for monitoring water quality and anthropogenic pollution such as domestic, agricultural, and industrial wastes. In this study, chlorophyll-a distributions of Lake Van were studied by using in situ chl-a measurements (by spectrophotometric method) found in the literature (1983-84, 2002 and 2014 data), remote sensing data and Geographic Information System (GIS) methods, and the representativeness of satellite data in the study region was evaluated. Accordingly, chl-a distributions in Lake Van varied significantly with higher chl-a concentrations found in the northeast and east of the lake compared to the western section. The differences in chl-a data from in situ measurements in field studies in 2014 (1.7-7.8 mg/m3) and the reflection ratio of the blue band (562-443 nm wavelength) to the green band (562-482 nm wavelength) of the Landsat-8 OLI sensor were found to be below the measurement errors (mean squared error) and which suggested the suitability of Landsat-8 OLI sensor for mapping chl-a concentrations throughout Lake Van. In addition, geo-statistical analyses were performed for the two other chl-a data sets including the 1983-84 and 2002 data, which were older than the available satellite technology. This study showed that the use of satellite data for representation for Lake Van chl-a spatial distribution is more accurate compared to GIS method.

Proje Numarası

112C001

Kaynakça

  • A. Reimer, G. Landmann, S. Kempe, Lake Van, Eastern Anatolia, hydrochemistry and history, Aquatic Geochemistry 15 (1–2) (2009) 195–222.
  • S. Kempe, J. Kazmierczak, G. Landmann, T. Konuk, A. Reimer, A. Lipp, Largest known microbialites discovered in Lake Van, Turkey, Nature 349 (6310) (1991) 605–608.
  • L. Daoji, D. Daler, Ocean pollution from land-based sources: East China Sea, China, Ambio 33 (1/2) (2004) 107–113.
  • S. Garrido, R. Ben-Hamadou, P. B. Oliveira, M. E. Cunha, M. A. Chícharo, C. D. Van Der Lingen, Diet and feeding intensity of sardine Sardina pilchardus: Correlation with satellite-derived chlorophyll data, Marine Ecology Progress Series 354 (2008) 245–256.
  • N. Olgun, S. Duggen, B. Langmann, M. Hort, C. F. Waythomas, L. Hoffmann, P. Croot, Geochemical evidence of oceanic iron fertilization by the Kasatochi volcanic eruption in 2008 and the potential impacts on Pacific sockeye salmon, Marine Ecology Progress Series 488 (2013) 81–88.
  • A. Tuzcu Kokal, N. Olgun, N. Musaoğlu, Detection of mucilage phenomenon in the Sea of Marmara by using multi-scale satellite data, Environmental Monitoring and Assessment 194 (585) (2022) 194–585.
  • X. M. Chuai, X. Chen, L. Yang, J. Zeng, A. Miao, H. Zhao, Effects of climatic changes and anthropogenic activities on lake eutrophication in different ecoregions, International Journal of Environmental Science and Technology 9 (2012) 503–514.
  • M. Nazari-Sharabian, S. Ahmad, M. Karakouzian, Climate change and eutrophication: A short review, Engineering, Technology and Applied Science Research 8 (6) (2018) 3668–3672.
  • B. Bardakcı Şener, E. M. Tıraşın, A. Ünlüoğlu, The influence of lake level fluctuations on fisheries in Lake Van, Journal of Limnology and Freshwater Fisheries Research, 7 (2) (2021) 157–165.
  • O. Holm-Hansen, M. Kahru, C. D. Hewes, S. Kawaguchi, T. Kameda, V. A. Sushin, I. Krasovski, J. Priddle, R. Korb, R. P. Hewitt, B. G. Mitchell, Temporal and spatial distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both shipboard measurements and satellite data, Deep-Sea Research Part II: Topical Studies in Oceanography, 51 (12-13) (2004) 1323–1331.
  • X. J. Wang, R. M. Liu, Spatial analysis and eutrophication assessment for chlorophyll a in Taihu Lake, Environmental Monitoring and Assessment 101 (1–3) (2005) 167–174.
  • A. Abdul-Hadi, S. Mansor, B. Pradhan, C. K. Tan, Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon - A remote sensing study, Environmental Monitoring and Assessment 185 (5) (2013) 3977–3991.
  • C. Giardino, M. Bresciani, D. Stroppiana, A. Oggioni, G. Morabito, Optical remote sensing of lakes: An overview on Lake Maggiore, Journal of Limnology 73 (1) (2014) 201–214.
  • N. T. T. Ha, K. Koike, M. T. Nhuan, B. D. Canh, N. T. P. Thao, M. Parsons, Landsat 8/OLI Two bants ratio algorithm for chlorophyll-a concentration mapping in hypertrophic waters: An application to west lake in Hanoi (Vietnam), IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (11) (2017) 4919–4929.
  • R. C. Trinh, C. G. Fichot, M. M. Gierach, B. Holt, N. K. Malakar, G. Hulley, J. Smith, Application of Landsat 8 for monitoring impacts of wastewater discharge on coastal water quality, Frontiers in Marine Science 4 (2017) 17 pages.
  • C. Cheng, Y. Wei, G. Lv, N. Xu, Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations, Environmental Monitoring and Assessment 191 (84) (2019) 25 pages.
  • R. W. Johnson, R. C. Harriss, Remote sensing for water quality and biological measurements in coastal waters, Photogrammetric Engineering and Remote Sensing 46 (1) (1980) 77–85.
  • J. P. Verdin, Monitoring water quality conditions in a large Western reservoir with Landsat imagery (USA), Photogrammetric Engineering and Remote Sensing 51 (3) (1985) 343–353.
  • A. G. Dekker, S. W. M. Peters, The use of the thematic mapper for the analysis of eutrophic lakes: A case study in the Netherlands, International Journal of Remote Sensing 14 (5) (1993) 799–821.
  • M. Mayo, A. Gitelson, Y. Z. Yacobi, Z. Ben-Avraham, Chlorophyll distribution in Lake Kinneret determined from Landsat Thematic Mapper data, International Journal of Remote Sensing 16 (1) (1995) 175–182.
  • R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, T. Bridgeman, Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie, Remote Sensing of Environment 89 (3) (2004) 381–392.
  • A. N. Tyler, E. Svab, T. Preston, M. Présing, W. A. Kovács, Remote sensing of the water quality of shallow lakes: A mixture modeling approach to quantifying phytoplankton in water characterized by high-suspended sediment, International Journal of Remote Sensing 27 (8) (2006) 1521–1537.
  • T. P. Albright, D. J. Ode, Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data, Hydrobiologia 661 (1) (2011) 469–474.
  • J. Andrzej Urbanski, A. Wochna, I. Bubak, W. Grzybowski, K. Lukawska-Matuszewska, M. Łącka, S. Śliwińska, B. Wojtasiewicz, M. Zajączkowski, Application of Landsat 8 imagery to regional-scale assessment of lake water quality, International Journal of Applied Earth Observation and Geoinformation 51 (2016) 28–36.
  • J. Boucher, K. C. Weathers, H. Norouzi, B. Steele, Assessing the effectiveness of Landsat 8 chlorophyll-a retrieval algorithms for regional freshwater monitoring, Ecological Applications 28 (4) (2018) 1044–1054.
  • J. Lim, M. Choi, Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea, Environmental Monitoring and Assessment 187 (2015) Article Number 384 17 pages.
  • A. P. Yunus, J. Dou, N. Sravanthi, Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis, Remote Sensing Applications: Society and Environment 2 (2015) 11–25.
  • F. S. Y. Watanabe, E. Alcântara, T. W. P. Rodrigues, N. N. Imai, C. C. F. Barbosa, L. H. da S. Rotta, Estimation of chlorophyll-a concentration and the trophic state of the barra bonita hydroelectric reservoir using Landsat-8/OLI images, International Journal of Environmental Research and Public Health 12 (9) (2015) 10391–10417.
  • Z. Yang, Y. Anderson, Estimating chlorophyll-A concentration in a freshwater lake using landsat 8 imagery, Journal of Environment and Earth Science 6 (4) (2016) 134–142.
  • Y. M. Li, J. Z. Huang, Y. C. Wei, W. N. Lu, Inversing chlorophyll concentration of Taihu Lake by analytic model, Journal of Remote Sensing-Beijing 10 (2) (2006) 2–4.
  • R. P. Bukata, J. E. Bruton, J. H. Jerome, S. C. Jain, H. H. Zwick, Optical water quality model of Lake Ontario 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors, Applied Optics 20 (9) (1981) 1704–1714.
  • K. Kallio, T. Kutser, T. Hannonen, S. Koponen, J. Pulliainen, J. Vepsäläinen, T. Pyhälahti, Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons, Science of the Total Environment 268 (1–3) (2001) 59–77.
  • A. A. Gilerson, A. A. Gitelson, J. Zhou, D. Gurlin, W. Moses, I. Ioannou, S. A. Ahmed, Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near-infrared bants, Optics Express 18 (23) (2010) 24109–24125.
  • N. T. T. Ha, K. Koike, M. T. Nhuan, Improved accuracy of chlorophyll-a concentration estimates from MODIS Imagery using a two-bant ratio algorithm and geostatistics: As applied to the monitoring of eutrophication processes over Tien Yen Bay (Northern Vietnam), Remote Sensing 6 (1) (2013) 421–442.
  • F. Zhang, J. Li, Q. Shen, B. Zhang, C. Wu, Y. Wu, G. Wang, S. Wang, Z. Lu, Algorithms and schemes for chlorophyll-a estimation by remote sensing and optical classification for turbid lake Taihu, China, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (1) (2015) 350–364.
  • T. M. Lillesand, R. W. Kiefer, J. Chipman, Remote sensing and image interpretation, 7th edition, Wiley Company, United States, 2015.
  • M. H. Gholizadeh, A. M. Melesse, L. Reddi, A comprehensive review on water quality parameters estimation using remote sensing techniques, Sensors 16 (8) (2016) 1298 43 pages.
  • D. G. George, The airborne remote sensing of phytoplankton chlorophyll in the lakes and tarns of the English Lake District, International Journal of Remote Sensing 18 (9) (1997) 1961–1975.
  • R. M. Liu, X. J. Wang, C. H. Wang, Y. C. Jiang, X. W. Zhou, Application of geo-statistics in studying spatial distribution of chlorophyll a in lakes, Agro-environment Protection 20 (5) (2001) 308–310.
  • S. Tuğrul, G. Dumlu, A. Baştürk, C. İlhal, T. Balkaş, Van Gölü özümleme kapasitesinin saptanması ve evsel nitelikli atıksu arıtımı ve deşarjı optimizasyonu. Gebze-Kocaeli: TÜBİTAK-MAM ve İller Bankası Genel Müdürlüğü (0730018301) Yayın Numarası 145 (1984) 183 pages.
  • M. Cüreoğlu, Van Gölü yüzey sularında klorofil-a değişiminin seaWIFS görüntüleri ve yer ölçümleri ile izlenmesi, Master’s Thesis Van Yüzüncü Yıl University (2002) Van.
  • D. Cukur, S. Krastel, H. U. Schmincke, M. Sumita, Y. Tomonaga, M. N. Çağatay, Water level changes in Lake Van, Turkey, during the past ca. 600 ka: climatic, volcanic and tectonic controls, Journal of Paleolimnology 52 (3) (2014) 201–214.
  • M. Şenel, T. Ercan, 1:500.000 ölçekli Türkiye jeoloji haritaları serisi, Van paftası, 2nd Edition, Ankara: Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara, 2002.
  • M. Stockhecke, F. S. Anselmetti, A. F. Meydan, D. Odermatt, M. Sturm, The annual particle cycle in Lake Van (Turkey), Palaeogeography, Palaeoclimatology, Palaeoecology 333–334 (2012) 148–159.
  • F. Barlas Şimşek, M. N. Çağatay, Late Holocene high-resolution multi-proxy climate and environmental records from Lake Van, eastern Turkey, Quaternary International 486 (2018) 57–72.
  • M. N. Çağatay, N. Öğretmen, E. Damcı, M. Stockhecke, Ü. Sancar, K. K. Eriş, S. Özeren, Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey, Quaternary Science Reviews 104 (2014) 97–116.
  • T. Litt, N. Pickarski, G. Heumann, M. Stockhecke, P. C. Tzedakis, A 600,000-year long continental pollen record from Lake Van, eastern Anatolia (Turkey), Quaternary Science Reviews 104 (2014) (2014) 30–41.
  • E. Damcı, M. N Çağatay, Chronological evolution of some morphological, tectonic and volcanic features in Lake Van, based on correlation of seismic and core data, Quaternary International 486 (2018) 29–43.
  • A. Turan, A. Aldemir, Statistical assessment of seasonal variations in water quality for different regions in Lake Van (Türkiye), Environmental Monitoring and Assessment 195 (2023) Article Number 237 18 pages.
  • N. Olğun Kıyak, M. N. Çağatay, Environmental impacts of subaerial volcanic eruptions on alkaline lakes – A case study on Lake Van in eastern Turkey (EVOLVAN). TÜBİTAK (European Commission 7th Framework Programme funded Project-Marie Curie 2236 Co-funded Brain Circulation Scheme) TÜBİTAK (112C001) (2015).
  • E. T. Degens, H. K. Wong, S. Kempe, F. Kurtman, A geological study of lake van, Eastern Turkey, Geologische Rundschau 73 (2) (1984) 701–734.
  • M. Keskin, Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters 30 (24) (2003) 8046 4 pages.
  • A. M. C. Şengör, M. S. Özeren, M. Keskin, M. Sakinç, A. D. Özbakir, I. Kayan, Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens, Earth Science Reviews 90 (1-2) (2008) 1–48.
  • O. Tüysüz, Ş. C. Genç, U. Tarı, Van depremi kör bindirme fayının kırılmasının bir sonucu, Cumhuriyet Bilim Teknoloji Gazetesi 1285 (2011) 10–11.
  • F. Arikan, M. N. Deviren, O. Lenk, U. Sezen, O. Arikan, Observed Ionospheric Effects of 23 October 2011 Van, Turkey Earthquake, Geomatics, Natural Hazards, and Risk, 3 (1) (2012) 1–8.
  • A. Sağlam Selçuk, Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey, Geomorphology 270 (2016) 9–21.
  • M. Kadioğlu, Z. Şen, E. Batur, The greatest soda-water lake in the world and how it is influenced by climatic change, Annales Geophysicae 15 (11) (1997) 1489–1497.
  • G. Landmann, A. Reimer, S. Kempe, Climatically induced lake level changes at Lake Van, Turkey, during the Pleistocene/Holocene transition, Global Biogeochemical Cycles 10 (4) (1996) 797–808.
  • S. Kempe, G. Landmann, G. Müller, A floating varve chronology from the last glacial maximum terrace of Lake Van (Turkey), Zeitschrift für Geomorphologie, Supplementbant 126 (2002) 97–114.
  • C. Kuzucuoglu, A. Christol, D. Mouralis, A. F. Dogu, E. Akköprü, M. Fort, D. Brunstein, H. Zorer, M. Fontugne, M. Karabiyikoğlu, S. Scaillet, J. L. Reyss, H. Guillou, Formation of the Upper Pleistocene terraces of Lake Van (Turkey), Journal of Quaternary Science 25 (7) (2010) 1124–1137.
  • R. Nagalakshmi, K. Prasanna, S. Prakash Chandar, Water quality analysis using GIS interpolation method in Serthalaikadu Lagoon, east coast of India, Rasayan Journal of Chemistry 9 (4) (2016) 634–640.
  • E. Y. Wardani, Y. Wardiatno, S. B. Agus, Spatial distribution and biophysics chemistry characterization of Pearl Oyster farming in Semau Strait, East Nusa Tenggara, IOP Conference Series: Earth and Environmental Science 54 (2017) 012069 10 pages.
  • M. Küçükönder, E. Kalkan, K. Cırık, Kılavuzlu baraj gölü (Kahramanmaraş) su kalitesi ve Kanada su kalite indeks sınıfı, Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 (1) (2022) 118–142.
  • D. Zimmerman, C. Pavlik, A. Ruggles, M. P. Armstrong, An experimental comparison of ordinary and universal kriging and inverse distance weighting, Mathematical Geology 31 (4) (1999) 375–390.
  • J. Li, L. Tian, Y. Wang, S. Jin, T. Li, X. Hou, Optimal sampling strategy of water quality monitoring at high dynamic lakes: A remote sensing and spatial simulated annealing integrated approach, Science of the Total Environment 777 (2021) 146113 14 pages.
  • E. Kim, S. H. Nam, C. H. Ahn, S. Lee, J. W Koo, T. M. Hwang, Comparison of spatial interpolation methods for distribution map an unmanned surface vehicle data for chlorophyll-a monitoring in the stream, Environmental Technology & Innovation 28 (2022) 102637 11 pages.
  • M. G. Allan, D. P. Hamilton, B. Hicks, L. Brabyn, Empirical and semi-analytical chlorophyll-a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat, Environmental Monitoring and Assessment 187 (2015) Article Number 364 24 pages.
  • K. Blix, K. Pálffy, V. R. Tóth, T. Eltoft, Remote sensing of water quality parameters over Lake Balaton by using Sentinel-3 OLCI, Water 10 (10) (2018) 1428 20 pages.
  • A. C. Blanco, A. Manuel, R. Jalbuena, K. Ticman, J. M. Medina, E. Gubatanga, A. Santos, R. Sta. Ana, E. Herrera, K. Nadaoka, Estimation of Chl-a concentration in Laguna Lake using Sentinel-3 OLCI images, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2020) 17–21.
  • C. D. Mobley, Estimation of the remote-sensing reflectance from above-surface measurements, Applied Optics 38 (36) (1999) 7442–7455.
  • C. Giardino, M. Pepe, P. A. Brivio, P. Ghezzi, E. Zilioli, Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery, Science of The Total Environment 268 (1-3) (2001) 19–29.
  • S. A. C. Nelson, P. A. Soranno, K. S. Cheruvelil, S. Batzli, D. Skole, Regional assessment of lake water clarity using satellite remote sensing, Journal of Limnology 62 (Suppl. 1) (2003) 27–32.
  • H. Wang, D. Zhao, L. Wang, F. Huang, Advance in remote sensing of water quality, Marine Environmental Science 31 (2) (2012) 285–288.
  • X. Wang, W. Yang, Water quality monitoring and evaluation using remote-sensing techniques in China: A systematic review, Ecosystem Health and Sustainability 5 (1) (2019) 47–56.
  • A. Morel, L. Prieur, Analysis of variations in ocean color, Limnology and Oceanography 22 (1977) 709–722.
  • H. R. Gordon, A. Y. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery, Springer-Verlag, New York, 1983.
  • K. L. Carder, F. R. Chen, Z. Lee, S. K. Hawes, J. P. Cannizzaro, MODIS Ocean Science Team Algorithm Theoretical Basis Document: Case 2 Chlorophyll-a, University of South Florida (2003) Florida.
  • J. Blaustein, The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll, International Journal of Remote Sensing 13 (17) (1992) 3367–3373.
  • H. Luoheng, D. C. Rundquist, Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir, Remote Sensing of Environment 62 (3) (1997). 253–261.
  • J. F. Schalles, Y. Z. Yacobi, Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters, Ergebnisse Der Limnologie 55 (2000) 153–168.
  • G. Yu, W. Yang, B. Matsushita, R. Li, Y. Oyama, T. Fukushima, Remote estimation of chlorophyll-a in inland waters by a NIR-red-based algorithm: Validation in Asian Lakes, Remote Sensing 6 (4) (2014) 3492–3510.
  • D. C. Pierson, N. Strömbeck, A modeling approach to evaluate preliminary remote sensing algorithms: Use of water quality data from Swedish great lakes, Geophysica 36 (1–2) (2000) 177–202.
  • J. F. Schalles, Optical remote sensing techniques to estimate phytoplankton chlorophyll-a concentrations in coastal waters with varying suspended matter and Cdom concentrations, Remote Sensing and Digital Image Processing 9 (2006) 27–79.
  • K. A. Hussein, K. Al Abdouli, D. T. Ghebreyesus, P. Petchprayoon, N. O. Al Hosani, H. Sharif, Spatiotemporal variability of chlorophyll-a and sea surface temperature, and their relationship with bathymetry over the coasts of UAE, Remote Sensing 13 (13) (2021) 2447 25 pages.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ufuk Tarı 0000-0002-0722-1899

Nazlı Olğun Kıyak 0000-0002-9863-812X

Proje Numarası 112C001
Erken Görünüm Tarihi 15 Mart 2024
Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 20 Haziran 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Tarı, U., & Olğun Kıyak, N. (2024). Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi. Journal of Advanced Research in Natural and Applied Sciences, 10(1), 60-79. https://doi.org/10.28979/jarnas.1317247
AMA Tarı U, Olğun Kıyak N. Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi. JARNAS. Mart 2024;10(1):60-79. doi:10.28979/jarnas.1317247
Chicago Tarı, Ufuk, ve Nazlı Olğun Kıyak. “Uydu Verisi Ve CBS Ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi”. Journal of Advanced Research in Natural and Applied Sciences 10, sy. 1 (Mart 2024): 60-79. https://doi.org/10.28979/jarnas.1317247.
EndNote Tarı U, Olğun Kıyak N (01 Mart 2024) Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi. Journal of Advanced Research in Natural and Applied Sciences 10 1 60–79.
IEEE U. Tarı ve N. Olğun Kıyak, “Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi”, JARNAS, c. 10, sy. 1, ss. 60–79, 2024, doi: 10.28979/jarnas.1317247.
ISNAD Tarı, Ufuk - Olğun Kıyak, Nazlı. “Uydu Verisi Ve CBS Ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi”. Journal of Advanced Research in Natural and Applied Sciences 10/1 (Mart 2024), 60-79. https://doi.org/10.28979/jarnas.1317247.
JAMA Tarı U, Olğun Kıyak N. Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi. JARNAS. 2024;10:60–79.
MLA Tarı, Ufuk ve Nazlı Olğun Kıyak. “Uydu Verisi Ve CBS Ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi”. Journal of Advanced Research in Natural and Applied Sciences, c. 10, sy. 1, 2024, ss. 60-79, doi:10.28979/jarnas.1317247.
Vancouver Tarı U, Olğun Kıyak N. Uydu Verisi ve CBS ile Van Gölü Klorofil-a Dinamiklerinin İzlenmesi. JARNAS. 2024;10(1):60-79.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).