Derleme
BibTex RIS Kaynak Göster

Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler

Yıl 2023, Cilt: 2 Sayı: 1, 79 - 92, 22.06.2023

Öz

Besinlerin bozulmadan uzun süre muhafaza edilmek üzere yapılan besin saklama uygulamaları tarih öncesi çağlara kadar uzanmaktadır. İyi muhafaza edilen besinlerin birçok yararı bulunmaktadır. Besinlerin saklanmasında kullanılan yöntemlerden bazıları, soğukta veya dondurarak muhafaza, ısıl işlem uygulamaları, kurutma, kimyasal koruyucu ilavesi, ışınlama, kontrollü ve modifiye atmosferdir. Bilinen ve en çok kullanılan yöntemler ise, ısıl işlem uygulamaları ve su aktivitesinin kontrolü ile besin saklama yöntemleridir. Klasik ısıl işlem yöntemlerinde yüksek sıcaklık derecelerinin kullanılması, besin değerini düşürdüğünden, geleneksel yöntemlerle işlem görmüş besinlerin daha az tercih edilmesine sebep olmuştur. Bu nedenlerle gıda üreticileri son yıllarda besin güvenliği ve kalitesini uzun süre korumayı hedefleyen, besinlerin raf ömrünü uzatan yeni saklama yöntemi arayışına girmiştir. Genellikle oda sıcaklığında ve yüksek sıcaklık derecelerine çıkılmadan uygulanan yeni teknikler, bu amaca hizmet etmektedir. Yeni teknolojilerle besin saklama yöntemlerinden bazıları, yüksek basınç, ultrases, ultraviyole, mikrodalga, yenilebilir film kaplama, aktif paketleme ve akıllı ambalaj gibi yöntemleridir. Günümüzde yeni saklama yöntemleri besin saklama teknolojisinde önemli bir rol oynamaktadır.

Kaynakça

  • 1. Saeed Akhtar,Mahfuzur R. Sarker &Ashfaque Hossain (2012). Microbiological food safety: a dilemma of developing societies.
  • 2. Ortega-Rivas E, Salmerón-Ochoa I. (2014). Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Crit Rev Food Sci Nutr. 2014;54(2):190-207.
  • 3. James C. Atuonwu, Craig Leadley, Andrew Bosman, Savvas A. Tassou, Estefania Lopez-Quiroga, Peter J. Fryer, (2018). Comparative assessment of innovative and conventional food preservation technologies: Process energy performance and greenhouse gas emissions,Innovative Food Science & Emerging Technologies,Volume 50,Pages 174-187,
  • 4. Açu, M., Yerlikaya, O., Kınık, Ö. (2014). Gıdalarda Isıl Olmayan Yeni Teknikler ve Mikroorganizmalar Üzerine Etkileri. Gıda ve Yem Bilimi-Teknolojisi Dergisi, 14, 23-35.
  • 5. Alsaffar A, Kalyoncu B. (2014). Pişirme yöntemleri, sy.64
  • 6. Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR. (2017). Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit Rev Food Sci Nutr. Sep 22;57(14):2970-2995.
  • 7. Li Y, Wu Y, Quan W, Jia X, He Z, Wang Z, Adhikari B, Chen J, Zeng M. (2020). Quantitation of furosine, furfurals, and advanced glycation end products in milk treated with pasteurization and sterilization methods applicable in China.
  • 8. Paola Pittia, Paparella Antonello, (2016). Chapter 2 - Safety by Control of Water Activity: Drying, Smoking, and Salt or Sugar Addition
  • 9. Vardin H., Akın, M. B. (2017). Düşük Sıcaklıklarda Gıdaların Korunması. İçinde Erkmen, O. Gıda Mikrobiyolojisi. 223-233, Ankara: Efil Yayınevi.
  • 10. Demiray E , Tülek Y.(2010). Donmuş Muhafaza Sırasında Meyve ve Sebzelerde Oluşan Kalite Değişimleri. Akademik Gıda 8(2): 36-44.
  • 11. Mohammad Shafiur Rahman, Conrad O. Perera (2007). Drying and Dehydration Processes in Food Preservation and Processing Panagiotis Chapter Drying and Food Preservation ByMohammad Shafiur Rahman, Conrad O. Perera
  • 12. A. Michailidis, Magdalini K. Krokida (2014). Drying and Dehydration Processes in Food Preservation and Processing Panagiotis .
  • 13. Korkmaz A.S, Demir Ç.Y. (2020). Gıda muhafaza ve ambalajlama teknikleri
  • 14. Anonymous. (2015). Comparative analysis of FD freeze-drying, Rural Practical Technology 168 (11):66–67. doi: CNKI: SUN:NCSJ.0.2015-11-045. 15. Wu, J. (1996). Review of Asparagus research. TCM Research 9 (4):54–56.
  • 16. Agric J. (2019). Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of Asparagus Stems Journal of Agricultural and Food Chemistry 67(5) DOI:10.1021/acs.jafc.8b05993
  • 17. Chang, C. H., H. Y. Lin, C. Y. Chang, and Y. C. Liu. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering 77 (3): 478–485. doi: 10.1016/j.jfoodeng.2005.06.061.
  • 18. Serino, S., G. Costagliola, and L. Gomez. (2019). Lyophilized tomato plant material: Validation of a reliable extraction method for the analysis of vitamin C. Journal of Food Composition and Analysis 81: 37–45.
  • 19. Cui, Z. W., C. Y. Li, C. F. Song, and Y. Song. (2008). Combined micro- wave-vacuum and freeze drying of carrot and apple chips. Drying Technology 26 (12):1517–1523. doi: 10.1080/07373930802463960.
  • 20. Rajkumar, G., S. Shanmugam, M. D. S. Galvao, M. T. S. Leite Neta, R. D. Dutra Sandes, A. S. Mujumdar, and N. Narain. (2017). Comparative evaluation of physical properties and aroma profile of carrot slices subjected to hot air and freeze drying. Drying Technology 35 (6):699–708. doi: 10.1080/07373937.2016.1206925.
  • 21. Mbondo, N. N., W. O. Owino, J. Ambuko, and D. N. Sila. 2018. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Ence & Nutrition 6 (6):1–10. doi: 10.1002/ fsn3.623.
  • 22. Zhang, L., L. Liao, Y. Qiao, C. Wang, D. Shi, K. An, and J. Hu. (2020). Effects of ultrahigh pressure and ultrasound pretreatments on prop- erties of strawberry chips prepared by vacuum-freeze drying. Food Chemistry 303:125386. doi: 10.1016/j.foodchem.2019.125386
  • 23. Castro-Muñoz, R.; González-Valdez, J. (2019). New trends in biopolymer-based membranes for pervaporation. Molecules , 24, 3584.
  • 24. Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. (2018). Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Compr. Rev. Food Sci. Food Saf., 17, 594–614.
  • 25. Tural S., Sarıcaoğlu T. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları, Cilt 15, Sayı 1, 84 - 94, 15.04.
  • 26. Zhang, Y.; Han, J.; Liu, Z. (2008). Starch-based edible films. In Environmentally Compatible Food Packaging; Woodhead Publishing: Sawston, UK, pp. 108–136.
  • 27. Castro-Muñoz, R.; Gonzalez-Valdez, J.; Ahmad, Z. (2020). High-performance pervaporation chitosan-based membranes: New insights and perspectives. Rev. Chem. Eng. 28. Díaz-Montes, Elsa, and Roberto Castro-Muñoz. (2021). "Edible films and coatings as food-quality Preservers: An Overview" Foods 10, no. 2: 249. https://doi.org/10.3390/foods10020249
  • 29. József Farkas, Csilla Mohácsi-Farkas,(2011). History and future of food irradiation,Trends in Food Science & Technology,Volume 22, Issues 2–3,Pages 121-126,ISSN 0924-2244,
  • 30. Joshua Ajibola, O. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789. doi: 10.21608/nrmj.2020.95321
  • 31. Karabacak, A. Ö., Sinir, G. Ö., Suna, S. (2015). "Mikrodalga ve Mikrodalga Destekli Kurutmanın Çeşitli Meyve ve Sebzelerin Kalite Parametreleri Üzerine Etkisi". Uludağ Üniversitesi Ziraat Fakültesi Dergisi
  • 32. Aboud, Salam A., Ammar B. Altemimi, Asaad R. S. Al-HiIphy, Lee Yi-Chen, and Francesco Cacciola. (2019). "A Comprehensive Review on Infrared Heating Applications in Food Processing" Molecules 24, no. 22: 4125. https://doi.org/10.3390/molecules24224125
  • 33. Pan, Z.; Atungulu, G.G. (2010). Infrared heating for food and agricultural processing; CRC Press: New York, NY, USA
  • 34. Tian X, Yu Q, Wu W, Dai R. (2018). Inactivation of microorganisms in foods by ohmic heating: A review. J Food Prot. Jul;81(7):1093-1107. doi: 10.4315/0362-028X.JFP-17-343. PMID: 29905088.
  • 35. Huang Z, Marra F, Subbiah J, Wang S.(2018). Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Crit Rev Food Sci Nutr. Apr 13;58(6):1033-1057. doi: 10.1080/10408398.2016.1253000. Epub 2017 Jun 2. PMID: 27892683.
  • 36. Pech-Almeida JL, Téllez-Pérez C, Alonzo-Macías M, Teresa-Martínez GD, Allaf K, Allaf T, Cardador-Martínez A. (2021). "An overview on food applications of the instant controlled pressure-drop technology, an innovative high pressure-short time process" Molecules. https://doi.org/10.3390/molecules26216519 Oct 28;26(21):651 37. Tao Y, Sun DW. (2015). Enhancement of food processes by ultrasound: a review. Crit Rev Food Sci Nutr.;55(4):570-94.
  • 38. Koca, N. , Saatli, T. E. , Urgu, M. (2018). "Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları". Akademik Gıda 16: 88-100
  • 39. Asiye A., Gülsün A. (2014) Vurgulu Elektrik Alan Teknolojisi (PEF): Sistem ve Uygulama Odacıkları, Akademik Gıda (69-78)
  • 40. Halime P., Aslı A. (2023). Meyve ve sebzelerin kurutulmasında modern yöntemler. 4.Uluslararası Bilimsel Araştırmalar Kongresi
  • 41. Yam, K.L.; Lee, D.S. (2012). Emerging food packaging technologies: An overview. In Emerging Food Packaging Technologies; pp. 1–9
  • 42. Kalpana S., Priyadarshini S.R., Maria Leena M., Moses J.A., (2019). Anandharamakrishnan C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. ; 93:145–157
  • 43. Baek S., Maruthupandy M., Lee K., Kim D., Seo J. (2020). Freshness indicator for monitoring changes in quality of packaged kimchi during storage. Food Packag. Shelf.
  • 44. Petkoska A.T., Daniloski D., D’Cunha N.M., Naumovski N., Broach A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int
  • 45. Saliu, F.; Della, P.R. (2018). Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin andpoly-lysine mixtures. Sens. Actuat. B Chem. 258, 1117–1124.
  • 46. Fung, F.; Wang, H.-S.; Menon, S. (2018). Food safety in the 21st century. Biomed. J. 77, 347.
  • 47. Ghoshal G. (2018). Food Packaging and Preservation. Elsevier Inc.; Amsterdam, The Netherlands:. Recent Trends in Active, Smart, and Intelligent Packaging for Food Products; pp. 343–374.
  • 48. Stubenrauch C. (2005). Neue Verpackungen für Lebensmittel: Gut verpackt Chem. Unserer Zeit. ;39:310–316. doi: 10.1002/ciuz.200400348
  • 49. Biji K.B., Ravishankar C.N., Mohan C.O., Gopal T.K.S. (2015). Smart packaging systems for food applications: A review. J. Food Sci. Technol. ;52:6125–6135.
  • 50. Souza V.G.L., Rodrigues C., Ferreira L., Pires J.R.A., Duarte M.P., Coelhoso I., Fernando A.L. (2019). In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. Prod. 51. Barbosa C.H., Andrade M.A., Vilarinho F., Castanheira I., Fernando A.L., Loizzo M.R., Silva A.S. (2020). A new insight on cardoon: Exploring new uses besides cheese making with a view to zero waste. Foods.
  • 52. Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R., Gavara R. (2014). Advances in antioxidant active food packaging. Trends Food Sci. Technol. 35:42–51.
  • 53. Ribeiro-Santos R., Andrade M., de Melo N.R., Sanches-Silva A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol.
  • 54. Yousefi H., Su, H.-M., Imani, S.M., Alkhaldi, K.M., Filipe, C.D., Didar, T.F., (2019).Intelligent food packaging: a review of smart sensing technologies for monitoringfood quality. ACS Sens. 4, 808–82

Traditional Food Storage Methods and New Technologies

Yıl 2023, Cilt: 2 Sayı: 1, 79 - 92, 22.06.2023

Öz

Nutrients deteriorate rapidly when interfered with by humans and left naturally. As the source of this history, data storage practices to date have always been important to people. While choosing the appropriate method for storing foods, it is necessary to pay attention to a method that will affect the flavor, smell, appearance and structure of the food in the least amount, as well as eliminating the factors that cause spoilage (1). Some of the methods used for food storage are cold or freeze preservation, heat treatment applications, drying, chemical preservative addition, irradiation, and controlled and modified atmosphere.

One of the most used traditional methods in food storage is heat treatment applications. Another common nutrient storage method is the control of water activity (2). Today, the increase in conscious consumers has led to a decrease in the interest in foods processed with traditional methods. The reason for this is the use of high temperatures in classical heat treatment methods, resulting in nutritional value losses. This review aimed to emphasize the importance of food storage, as well as to review new and traditional food storage methods.

Kaynakça

  • 1. Saeed Akhtar,Mahfuzur R. Sarker &Ashfaque Hossain (2012). Microbiological food safety: a dilemma of developing societies.
  • 2. Ortega-Rivas E, Salmerón-Ochoa I. (2014). Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Crit Rev Food Sci Nutr. 2014;54(2):190-207.
  • 3. James C. Atuonwu, Craig Leadley, Andrew Bosman, Savvas A. Tassou, Estefania Lopez-Quiroga, Peter J. Fryer, (2018). Comparative assessment of innovative and conventional food preservation technologies: Process energy performance and greenhouse gas emissions,Innovative Food Science & Emerging Technologies,Volume 50,Pages 174-187,
  • 4. Açu, M., Yerlikaya, O., Kınık, Ö. (2014). Gıdalarda Isıl Olmayan Yeni Teknikler ve Mikroorganizmalar Üzerine Etkileri. Gıda ve Yem Bilimi-Teknolojisi Dergisi, 14, 23-35.
  • 5. Alsaffar A, Kalyoncu B. (2014). Pişirme yöntemleri, sy.64
  • 6. Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR. (2017). Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit Rev Food Sci Nutr. Sep 22;57(14):2970-2995.
  • 7. Li Y, Wu Y, Quan W, Jia X, He Z, Wang Z, Adhikari B, Chen J, Zeng M. (2020). Quantitation of furosine, furfurals, and advanced glycation end products in milk treated with pasteurization and sterilization methods applicable in China.
  • 8. Paola Pittia, Paparella Antonello, (2016). Chapter 2 - Safety by Control of Water Activity: Drying, Smoking, and Salt or Sugar Addition
  • 9. Vardin H., Akın, M. B. (2017). Düşük Sıcaklıklarda Gıdaların Korunması. İçinde Erkmen, O. Gıda Mikrobiyolojisi. 223-233, Ankara: Efil Yayınevi.
  • 10. Demiray E , Tülek Y.(2010). Donmuş Muhafaza Sırasında Meyve ve Sebzelerde Oluşan Kalite Değişimleri. Akademik Gıda 8(2): 36-44.
  • 11. Mohammad Shafiur Rahman, Conrad O. Perera (2007). Drying and Dehydration Processes in Food Preservation and Processing Panagiotis Chapter Drying and Food Preservation ByMohammad Shafiur Rahman, Conrad O. Perera
  • 12. A. Michailidis, Magdalini K. Krokida (2014). Drying and Dehydration Processes in Food Preservation and Processing Panagiotis .
  • 13. Korkmaz A.S, Demir Ç.Y. (2020). Gıda muhafaza ve ambalajlama teknikleri
  • 14. Anonymous. (2015). Comparative analysis of FD freeze-drying, Rural Practical Technology 168 (11):66–67. doi: CNKI: SUN:NCSJ.0.2015-11-045. 15. Wu, J. (1996). Review of Asparagus research. TCM Research 9 (4):54–56.
  • 16. Agric J. (2019). Effect of Drying Methods on the Microstructure, Bioactivity Substances, and Antityrosinase Activity of Asparagus Stems Journal of Agricultural and Food Chemistry 67(5) DOI:10.1021/acs.jafc.8b05993
  • 17. Chang, C. H., H. Y. Lin, C. Y. Chang, and Y. C. Liu. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering 77 (3): 478–485. doi: 10.1016/j.jfoodeng.2005.06.061.
  • 18. Serino, S., G. Costagliola, and L. Gomez. (2019). Lyophilized tomato plant material: Validation of a reliable extraction method for the analysis of vitamin C. Journal of Food Composition and Analysis 81: 37–45.
  • 19. Cui, Z. W., C. Y. Li, C. F. Song, and Y. Song. (2008). Combined micro- wave-vacuum and freeze drying of carrot and apple chips. Drying Technology 26 (12):1517–1523. doi: 10.1080/07373930802463960.
  • 20. Rajkumar, G., S. Shanmugam, M. D. S. Galvao, M. T. S. Leite Neta, R. D. Dutra Sandes, A. S. Mujumdar, and N. Narain. (2017). Comparative evaluation of physical properties and aroma profile of carrot slices subjected to hot air and freeze drying. Drying Technology 35 (6):699–708. doi: 10.1080/07373937.2016.1206925.
  • 21. Mbondo, N. N., W. O. Owino, J. Ambuko, and D. N. Sila. 2018. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Ence & Nutrition 6 (6):1–10. doi: 10.1002/ fsn3.623.
  • 22. Zhang, L., L. Liao, Y. Qiao, C. Wang, D. Shi, K. An, and J. Hu. (2020). Effects of ultrahigh pressure and ultrasound pretreatments on prop- erties of strawberry chips prepared by vacuum-freeze drying. Food Chemistry 303:125386. doi: 10.1016/j.foodchem.2019.125386
  • 23. Castro-Muñoz, R.; González-Valdez, J. (2019). New trends in biopolymer-based membranes for pervaporation. Molecules , 24, 3584.
  • 24. Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. (2018). Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Compr. Rev. Food Sci. Food Saf., 17, 594–614.
  • 25. Tural S., Sarıcaoğlu T. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları, Cilt 15, Sayı 1, 84 - 94, 15.04.
  • 26. Zhang, Y.; Han, J.; Liu, Z. (2008). Starch-based edible films. In Environmentally Compatible Food Packaging; Woodhead Publishing: Sawston, UK, pp. 108–136.
  • 27. Castro-Muñoz, R.; Gonzalez-Valdez, J.; Ahmad, Z. (2020). High-performance pervaporation chitosan-based membranes: New insights and perspectives. Rev. Chem. Eng. 28. Díaz-Montes, Elsa, and Roberto Castro-Muñoz. (2021). "Edible films and coatings as food-quality Preservers: An Overview" Foods 10, no. 2: 249. https://doi.org/10.3390/foods10020249
  • 29. József Farkas, Csilla Mohácsi-Farkas,(2011). History and future of food irradiation,Trends in Food Science & Technology,Volume 22, Issues 2–3,Pages 121-126,ISSN 0924-2244,
  • 30. Joshua Ajibola, O. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789. doi: 10.21608/nrmj.2020.95321
  • 31. Karabacak, A. Ö., Sinir, G. Ö., Suna, S. (2015). "Mikrodalga ve Mikrodalga Destekli Kurutmanın Çeşitli Meyve ve Sebzelerin Kalite Parametreleri Üzerine Etkisi". Uludağ Üniversitesi Ziraat Fakültesi Dergisi
  • 32. Aboud, Salam A., Ammar B. Altemimi, Asaad R. S. Al-HiIphy, Lee Yi-Chen, and Francesco Cacciola. (2019). "A Comprehensive Review on Infrared Heating Applications in Food Processing" Molecules 24, no. 22: 4125. https://doi.org/10.3390/molecules24224125
  • 33. Pan, Z.; Atungulu, G.G. (2010). Infrared heating for food and agricultural processing; CRC Press: New York, NY, USA
  • 34. Tian X, Yu Q, Wu W, Dai R. (2018). Inactivation of microorganisms in foods by ohmic heating: A review. J Food Prot. Jul;81(7):1093-1107. doi: 10.4315/0362-028X.JFP-17-343. PMID: 29905088.
  • 35. Huang Z, Marra F, Subbiah J, Wang S.(2018). Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Crit Rev Food Sci Nutr. Apr 13;58(6):1033-1057. doi: 10.1080/10408398.2016.1253000. Epub 2017 Jun 2. PMID: 27892683.
  • 36. Pech-Almeida JL, Téllez-Pérez C, Alonzo-Macías M, Teresa-Martínez GD, Allaf K, Allaf T, Cardador-Martínez A. (2021). "An overview on food applications of the instant controlled pressure-drop technology, an innovative high pressure-short time process" Molecules. https://doi.org/10.3390/molecules26216519 Oct 28;26(21):651 37. Tao Y, Sun DW. (2015). Enhancement of food processes by ultrasound: a review. Crit Rev Food Sci Nutr.;55(4):570-94.
  • 38. Koca, N. , Saatli, T. E. , Urgu, M. (2018). "Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları". Akademik Gıda 16: 88-100
  • 39. Asiye A., Gülsün A. (2014) Vurgulu Elektrik Alan Teknolojisi (PEF): Sistem ve Uygulama Odacıkları, Akademik Gıda (69-78)
  • 40. Halime P., Aslı A. (2023). Meyve ve sebzelerin kurutulmasında modern yöntemler. 4.Uluslararası Bilimsel Araştırmalar Kongresi
  • 41. Yam, K.L.; Lee, D.S. (2012). Emerging food packaging technologies: An overview. In Emerging Food Packaging Technologies; pp. 1–9
  • 42. Kalpana S., Priyadarshini S.R., Maria Leena M., Moses J.A., (2019). Anandharamakrishnan C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. ; 93:145–157
  • 43. Baek S., Maruthupandy M., Lee K., Kim D., Seo J. (2020). Freshness indicator for monitoring changes in quality of packaged kimchi during storage. Food Packag. Shelf.
  • 44. Petkoska A.T., Daniloski D., D’Cunha N.M., Naumovski N., Broach A.T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int
  • 45. Saliu, F.; Della, P.R. (2018). Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin andpoly-lysine mixtures. Sens. Actuat. B Chem. 258, 1117–1124.
  • 46. Fung, F.; Wang, H.-S.; Menon, S. (2018). Food safety in the 21st century. Biomed. J. 77, 347.
  • 47. Ghoshal G. (2018). Food Packaging and Preservation. Elsevier Inc.; Amsterdam, The Netherlands:. Recent Trends in Active, Smart, and Intelligent Packaging for Food Products; pp. 343–374.
  • 48. Stubenrauch C. (2005). Neue Verpackungen für Lebensmittel: Gut verpackt Chem. Unserer Zeit. ;39:310–316. doi: 10.1002/ciuz.200400348
  • 49. Biji K.B., Ravishankar C.N., Mohan C.O., Gopal T.K.S. (2015). Smart packaging systems for food applications: A review. J. Food Sci. Technol. ;52:6125–6135.
  • 50. Souza V.G.L., Rodrigues C., Ferreira L., Pires J.R.A., Duarte M.P., Coelhoso I., Fernando A.L. (2019). In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. Prod. 51. Barbosa C.H., Andrade M.A., Vilarinho F., Castanheira I., Fernando A.L., Loizzo M.R., Silva A.S. (2020). A new insight on cardoon: Exploring new uses besides cheese making with a view to zero waste. Foods.
  • 52. Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R., Gavara R. (2014). Advances in antioxidant active food packaging. Trends Food Sci. Technol. 35:42–51.
  • 53. Ribeiro-Santos R., Andrade M., de Melo N.R., Sanches-Silva A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol.
  • 54. Yousefi H., Su, H.-M., Imani, S.M., Alkhaldi, K.M., Filipe, C.D., Didar, T.F., (2019).Intelligent food packaging: a review of smart sensing technologies for monitoringfood quality. ACS Sens. 4, 808–82
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme ve Diyetetik
Bölüm Derlemeler
Yazarlar

Gülsüm Sayiner 0000-0001-5310-4274

Yasemin Beyhan 0000-0002-4001-1965

Yayımlanma Tarihi 22 Haziran 2023
Gönderilme Tarihi 19 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 1

Kaynak Göster

APA Sayiner, G., & Beyhan, Y. (2023). Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler. Toros University Journal of Food Nutrition and Gastronomy, 2(1), 79-92.
AMA Sayiner G, Beyhan Y. Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler. JFNG. Haziran 2023;2(1):79-92.
Chicago Sayiner, Gülsüm, ve Yasemin Beyhan. “Geleneksel Besin Saklama Yöntemleri Ve Yeni Teknolojiler”. Toros University Journal of Food Nutrition and Gastronomy 2, sy. 1 (Haziran 2023): 79-92.
EndNote Sayiner G, Beyhan Y (01 Haziran 2023) Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler. Toros University Journal of Food Nutrition and Gastronomy 2 1 79–92.
IEEE G. Sayiner ve Y. Beyhan, “Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler”, JFNG, c. 2, sy. 1, ss. 79–92, 2023.
ISNAD Sayiner, Gülsüm - Beyhan, Yasemin. “Geleneksel Besin Saklama Yöntemleri Ve Yeni Teknolojiler”. Toros University Journal of Food Nutrition and Gastronomy 2/1 (Haziran 2023), 79-92.
JAMA Sayiner G, Beyhan Y. Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler. JFNG. 2023;2:79–92.
MLA Sayiner, Gülsüm ve Yasemin Beyhan. “Geleneksel Besin Saklama Yöntemleri Ve Yeni Teknolojiler”. Toros University Journal of Food Nutrition and Gastronomy, c. 2, sy. 1, 2023, ss. 79-92.
Vancouver Sayiner G, Beyhan Y. Geleneksel Besin Saklama Yöntemleri ve Yeni Teknolojiler. JFNG. 2023;2(1):79-92.