Araştırma Makalesi
BibTex RIS Kaynak Göster

TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES

Yıl 2022, Cilt: 46 Sayı: 1, 86 - 102, 29.01.2022
https://doi.org/10.33483/jfpau.983848

Öz

Objective: Cancer is the major cause of mortality in most of the developing countries. Enormous chemotherapeutic agents developed are still need improvements in survival rates and quality of life for cancer patients. Pro-viral Integration site of Moloney murine leukemia virus (PIM1) is a family of serine/threonine kinase, regulated by calcium/calmudulin have been identified as a unique molecular target in oncogenesis. PIM1 has significant role in cell cycle regulation, cell survival, apoptosis, cellular senescence, drug resistance and it is emerging as a potential biomarker in number of human malignancies. Today many interesting PIM1 inhibitors are developed and few withdrawn from phase1 and 2 clinical trials, due to lack of bioavailability and toxicity. Hence the purpose of the present study is to develop more potent and less toxic compounds.
Material and Method: A series of novel 2-oxindoles with dithiocarbamates were designed as PIM1 inhibitors. All molecules were subjected to Molsoft, Molinspiration, Swiss ADME and pkCSM to predict their molecular properties which are important for drug candidate. Further, in order to find the binding affinity of designed molecules with PIM1 kinase protein and to rationalize their anticancer activity, molecular docking study was performed.
Result and Discussion: Results revealed that all designed compounds fulfilled the criteria for good oral bioavailability, low toxicity and the potential inhibitory activities. All of them were docked into active site of PIM1 kinase with AutoDock Vina software. In conclusion, according to the binding energy values, compound 16 and 24 showed equivalent dock score -9.7 kcal/mol which are comparable with previously reported compounds AZ1208 and SGI 1776. This finding will help the researchers in the design of a better drug for the treatment of cancer.

Destekleyen Kurum

Sarojini Naidu Vanita Pharmacy Maha Vidyalaya, Tarnaka, Hyderabad.

Kaynakça

  • 1. 1. Zhang, X., Song, M., Kundu, J.K., Lee, M.H., Liu, Z.Z. (2018). PIM Kinase as an Executional Target in Cancer. Journal of Cancer Prevention, 23(3), 109–116. [CrossRef]
  • 2. Tursynbay, Y., Zhang, J., Li, Z., Tokay, T., Zhumadilov, Z., Wu, D., Xie, Y. (2016). PIM kinases as cancer drug target: An update (Review). Biomedical Reports, 4(2), 140-146. [CrossRef]
  • 3. Saurabh, K., Scherzer, M.T., Shah, P.P., Mims, A.S., Lockwood, W.W., Kraft, A.S. (2014). The PIM family of oncoproteins: small kinases with huge implications in myeloid leukemogenesis and as therapeutic targets. Oncotarget, 5, 8503–8514. [CrossRef]
  • 4. Asati,V., Mahapatra, D.K., Bharti, S.K. (2019). PIM kinase inhibitors: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 172, 95-108. [CrossRef]
  • 5. Harshita, P.S., Soma Yasaswi, P., Jyothi, V., Saritha Jyostna, T. (2020). PIM-1 Kinase: A Novel Target for Cancer Chemotherapy- A Review. International Journal of Pharmaceutical Sciences and Research, 11(6), 1000-1011. [CrossRef]
  • 6. Roskoski, R., Sunitinib, A. (2007). VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochemical and Biophysical Research Communications, 356(2), 323–328. [CrossRef]
  • 7. Clinical trails https://www.clinicaltrials.gov/ [CrossRef]
  • 8. Baig, M.H., Ahmad, K., Adil, M., Khan, Z.A., Khan, M.I. (2014). Drug Discovery and In Silico Techniques: A Mini-Review. Enzyme Engineering , 4(1), 123. [CrossRef]
  • 9. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(3), 427-417. [CrossRef]
  • 10. Abagyan, R.A., Totrov, M.M., Kuznetsov, D.N. (1994). ICM - a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15(5), 488-506. [CrossRef] 11. Molinspiration Cheminformatics free web services, https://www.molinspiration.com/ [CrossRef]
  • 12. Pires, EVD., Blundell, L.T., Ascher, B.D. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. [CrossRef]
  • 13. Klejborowska, G., Urbaniak, A., Maj, E., Preto, J., Moshari, M., Wietrgyk, J., Tusuzynski, J.A., Chambers, T.C., Huczyriski, A. (2020). Synthesis and biological evaluation and molecular docking studies of new amides of 4- chlorothiocolchicine as anticancer agents. Bioorganic Chemistry, 97, 103664. [CrossRef]
  • 14. Agata, S., Tomasz, P., Joanna, S., Paweł, S., Aleksandra, S. (2014). Molecular properties prediction, docking studies, and antimicrobial screening of 1,3,4-thiadiazole and s-triazole derivatives. Current Computer-Aided Drug Design, 10(1), 3-14. [CrossRef]
  • 15. Farrang, A.M., Ibrahim, M.H., Mehany, A.B.M., Ismail, M.M.F. (2020). New cyanopyridine based scaffold as PIM1 inhibitors and apoptotic inducers: Synthesis and SARs Study. Bioorganic Chemistry, 105, 104378. [CrossRef]
  • 16. Protein Data Bank (PDB) https://www.rcsb.org/ [CrossRef]
  • 17. Pharmit: interactive exploration of chemical space. https://pharmit.csb.pitt.edu. [CrossRef]
  • 18. AutoDockVina. v.1.2.0, the free GUI for AutoDock Vina. . [http://autodock.scripps.edu/]. [CrossRef]
  • 19. MuniSireesha, S., Dipankar, Bhowmik., Soujanya, D., Brijıtha, G and Jyothi, V. (2021) Computatıonal validatıon of tacrıne analogs as antialzheimer’s agents against acetylcholinesterases. International Journal of Biology, Pharmacy and Allied Sciences , 10(10), 243-254. [CrossRef]

3BGQ - PIM1 KİNAZ ETKİLEŞİMİNİ HEDEF ALAN YENİ DİTİYOKARBAMAT İLE SÜBSTİTÜE 2-OKSOİNDOL TÜREVLERİNİN İN SİLİKO ÇALIŞMALARI

Yıl 2022, Cilt: 46 Sayı: 1, 86 - 102, 29.01.2022
https://doi.org/10.33483/jfpau.983848

Öz

Amaç: Kanser, gelişmekte olan ülkelerin çoğunda başlıca ölüm nedenidir. Geliştirilen muazzam kemoterapötik ajanların, kanser hastalarının hayatta kalma oranları ve yaşam kaliteleri açısından hala iyileştirilmeleri gerekmektedir. Moloney murin lösemi virüsünün (PIM1) pro-viral entegrasyon bölgesi, kalsiyum/kalmudulin tarafından düzenlenen bir serin/treonin kinaz ailesidir, onkogenezde benzersiz bir moleküler hedef olarak tanımlanmıştır. PIM1 hücre döngüsü düzenlenmesi, hücre sağkalımı, apoptozu, hücresel yaşlanması ve ilaç direncinde önemli bir role sahiptir ve insan malignitelerinin sayısında potansiyel bir biyobelirteç olarak ortaya çıkmaktadır. Bugün birçok ilginç PIM1 inhibitörü geliştirildi ve biyoyararlanım ve toksisite eksikliği nedeniyle birkaçı faz 1 ve 2 klinik çalışmalardan çekildi. Dolayısıyla bu çalışmanın amacı, daha güçlü ve daha az toksik bileşikler geliştirmektir.
Gereç ve Yöntem: Ditiyokarbamat içeren bir seri yeni 2-oksindoller PIM1 inhibitörü olarak tasarlandı. Tüm moleküllerin ilaç adayı için önemli olan moleküler özelliklerini tahmin etmek için Molsoft, Molinspiration, Swiss ADME ve pkCSM programları kullanıldı. Ayrıca, tasarlanan bileşiklerin PIM1 kinaz proteini ile bağlanma afinitelerini bulmak ve antikanser aktivitelerini rasyonalize etmek için, moleküler yerleştirme çalışması yapıldı.
Sonuç ve Tartışma: Sonuçlar, tasarlanan tüm bileşiklerin iyi oral biyoyararlanım, düşük toksisite ve potansiyel inhibitör aktiviteler için kriterleri karşıladığını ortaya koymaktadır. Tüm bileşiklerin PIM1 kinazın aktif bölgesine yerleştirilmesi Auto DockVina yazılımı ile gerçekleştirildi. Sonuç olarak, bağlanma enerjisi değerlerine göre, bileşik 16 ve 24 daha önce bildirilen AZ1208 ve SGI 1776 bileşikleri ile karşılaştırılabilir eşdeğer dock skoru -9.7 Kcal/mol gösterdi. Bu bulgu, araştırmacılara kanser tedavisi için daha iyi bir ilacın tasarımında yardımcı olacaktır.

Kaynakça

  • 1. 1. Zhang, X., Song, M., Kundu, J.K., Lee, M.H., Liu, Z.Z. (2018). PIM Kinase as an Executional Target in Cancer. Journal of Cancer Prevention, 23(3), 109–116. [CrossRef]
  • 2. Tursynbay, Y., Zhang, J., Li, Z., Tokay, T., Zhumadilov, Z., Wu, D., Xie, Y. (2016). PIM kinases as cancer drug target: An update (Review). Biomedical Reports, 4(2), 140-146. [CrossRef]
  • 3. Saurabh, K., Scherzer, M.T., Shah, P.P., Mims, A.S., Lockwood, W.W., Kraft, A.S. (2014). The PIM family of oncoproteins: small kinases with huge implications in myeloid leukemogenesis and as therapeutic targets. Oncotarget, 5, 8503–8514. [CrossRef]
  • 4. Asati,V., Mahapatra, D.K., Bharti, S.K. (2019). PIM kinase inhibitors: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 172, 95-108. [CrossRef]
  • 5. Harshita, P.S., Soma Yasaswi, P., Jyothi, V., Saritha Jyostna, T. (2020). PIM-1 Kinase: A Novel Target for Cancer Chemotherapy- A Review. International Journal of Pharmaceutical Sciences and Research, 11(6), 1000-1011. [CrossRef]
  • 6. Roskoski, R., Sunitinib, A. (2007). VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochemical and Biophysical Research Communications, 356(2), 323–328. [CrossRef]
  • 7. Clinical trails https://www.clinicaltrials.gov/ [CrossRef]
  • 8. Baig, M.H., Ahmad, K., Adil, M., Khan, Z.A., Khan, M.I. (2014). Drug Discovery and In Silico Techniques: A Mini-Review. Enzyme Engineering , 4(1), 123. [CrossRef]
  • 9. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(3), 427-417. [CrossRef]
  • 10. Abagyan, R.A., Totrov, M.M., Kuznetsov, D.N. (1994). ICM - a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15(5), 488-506. [CrossRef] 11. Molinspiration Cheminformatics free web services, https://www.molinspiration.com/ [CrossRef]
  • 12. Pires, EVD., Blundell, L.T., Ascher, B.D. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. [CrossRef]
  • 13. Klejborowska, G., Urbaniak, A., Maj, E., Preto, J., Moshari, M., Wietrgyk, J., Tusuzynski, J.A., Chambers, T.C., Huczyriski, A. (2020). Synthesis and biological evaluation and molecular docking studies of new amides of 4- chlorothiocolchicine as anticancer agents. Bioorganic Chemistry, 97, 103664. [CrossRef]
  • 14. Agata, S., Tomasz, P., Joanna, S., Paweł, S., Aleksandra, S. (2014). Molecular properties prediction, docking studies, and antimicrobial screening of 1,3,4-thiadiazole and s-triazole derivatives. Current Computer-Aided Drug Design, 10(1), 3-14. [CrossRef]
  • 15. Farrang, A.M., Ibrahim, M.H., Mehany, A.B.M., Ismail, M.M.F. (2020). New cyanopyridine based scaffold as PIM1 inhibitors and apoptotic inducers: Synthesis and SARs Study. Bioorganic Chemistry, 105, 104378. [CrossRef]
  • 16. Protein Data Bank (PDB) https://www.rcsb.org/ [CrossRef]
  • 17. Pharmit: interactive exploration of chemical space. https://pharmit.csb.pitt.edu. [CrossRef]
  • 18. AutoDockVina. v.1.2.0, the free GUI for AutoDock Vina. . [http://autodock.scripps.edu/]. [CrossRef]
  • 19. MuniSireesha, S., Dipankar, Bhowmik., Soujanya, D., Brijıtha, G and Jyothi, V. (2021) Computatıonal validatıon of tacrıne analogs as antialzheimer’s agents against acetylcholinesterases. International Journal of Biology, Pharmacy and Allied Sciences , 10(10), 243-254. [CrossRef]
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Muni Sireesha Sunkara 0000-0003-4949-1712

Saritha Jyostna Tangeda 0000-0001-8788-802X

Dharani Annepally Bu kişi benim 0000-0001-8788-802X

Donna Kanthi Bıtla Bu kişi benim 0000-0001-8788-802X

Sushma Boppy 0000-0001-8788-802X

Pallavı Chidurala 0000-0001-8788-802X

Jhansi Chıluka Bu kişi benim 0000-0001-8788-802X

Yayımlanma Tarihi 29 Ocak 2022
Gönderilme Tarihi 18 Ağustos 2021
Kabul Tarihi 9 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 46 Sayı: 1

Kaynak Göster

APA Sunkara, M. S., Tangeda, S. J., Annepally, D., Bıtla, D. K., vd. (2022). TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES. Journal of Faculty of Pharmacy of Ankara University, 46(1), 86-102. https://doi.org/10.33483/jfpau.983848
AMA Sunkara MS, Tangeda SJ, Annepally D, Bıtla DK, Boppy S, Chidurala P, Chıluka J. TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES. Ankara Ecz. Fak. Derg. Ocak 2022;46(1):86-102. doi:10.33483/jfpau.983848
Chicago Sunkara, Muni Sireesha, Saritha Jyostna Tangeda, Dharani Annepally, Donna Kanthi Bıtla, Sushma Boppy, Pallavı Chidurala, ve Jhansi Chıluka. “TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 1 (Ocak 2022): 86-102. https://doi.org/10.33483/jfpau.983848.
EndNote Sunkara MS, Tangeda SJ, Annepally D, Bıtla DK, Boppy S, Chidurala P, Chıluka J (01 Ocak 2022) TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES. Journal of Faculty of Pharmacy of Ankara University 46 1 86–102.
IEEE M. S. Sunkara, “TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES”, Ankara Ecz. Fak. Derg., c. 46, sy. 1, ss. 86–102, 2022, doi: 10.33483/jfpau.983848.
ISNAD Sunkara, Muni Sireesha vd. “TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES”. Journal of Faculty of Pharmacy of Ankara University 46/1 (Ocak 2022), 86-102. https://doi.org/10.33483/jfpau.983848.
JAMA Sunkara MS, Tangeda SJ, Annepally D, Bıtla DK, Boppy S, Chidurala P, Chıluka J. TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES. Ankara Ecz. Fak. Derg. 2022;46:86–102.
MLA Sunkara, Muni Sireesha vd. “TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 1, 2022, ss. 86-102, doi:10.33483/jfpau.983848.
Vancouver Sunkara MS, Tangeda SJ, Annepally D, Bıtla DK, Boppy S, Chidurala P, Chıluka J. TARGETTING THE 3BGQ - PIM1 KINASE INTERACTION WITH A SERIES OF NOVEL DITHIOCARBAMATE SUBSTITUTED 2-OXOINDOLE DERIVATIVES - IN SILICO STUDIES. Ankara Ecz. Fak. Derg. 2022;46(1):86-102.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.