Derleme
BibTex RIS Kaynak Göster

Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme

Yıl 2024, Cilt: 14 Sayı: 1, 422 - 436, 01.03.2024
https://doi.org/10.21597/jist.1342361

Öz

Beton, yüksek basınç dayanımlarını karşılayabilmesine rağmen doğası gereği çekme ve eğilme dayanımı düşük olduğundan çatlak oluşumuna karşı hassas bir yapı malzemesidir. Beton, çok fazlı kompozit bir malzeme olup, davranışı kendisini oluşturan bileşenlerin özelliklerine göre değişkenlik göstermektedir. Her bir karışım parametresinin çatlak gelişim mekanizması üzerinde önemli etkileri bulunmaktadır. Mevcut derleme çalışmasında çimento esaslı malzemelerde çatlak gelişim mekanizması ve karışım parametrelerinin çatlak oluşum mekanizması üzerine olan etkileri özellikle son 10 yılda yapılan çalışmalar esas alınarak geniş bir literatür taramasıyla araştırılmıştır. Literatür araştırması sonucunda, düşük su/çimento oranı, parçacık boyutu dağılımı ve karışım oranlarının optimize edilmesiyle maksimum agrega parçacık yoğunluğunun elde edilmesi, çimentonun bir kısmının optimum miktarda mineral katkılar ve nano malzemelerle değiştirilmesi, gevrek özellik gösteren çimento matrisinin çeşitli liflerle hibrit kombinasyonun, betonun dayanımını, sünekliğini ve tokluğunu iyileştirerek çatlak oluşumuna karşı dayanımı arttırdığı anlaşılmıştır.

Kaynakça

  • Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-Performance Fiber-Reinforced Concrete: A Review. Journal of Materials Science, 51, s. 6517–6551. doi:https://doi.org/10.1007/s10853-016-9917-4
  • Akeed, M. H., Qaidi, S., Ahmed, H. U., Faraj, R. H., Mohammed, A. S., Emad, W., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part II: Hydration And Microstructure. Case Studies in Construction Materials, 17(e01289). doi:https://doi.org/10.1016/j.cscm.2022.e01289
  • Akeed, M. H., Qaidi, S., Ahmed, H. U., Emad, W., Faraj, R. H., Mohammed, A. S., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part III: Fresh And Hardened Properties. Case Studies in Construction Materials, 17(e01265). doi:https://doi.org/10.1016/j.cscm.2022.e01265
  • Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Mohammed, A., Emad, W., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part I: Developments, Principles, Raw Materials. Case Studies in Construction Materials, 17(e01290). doi:https://doi.org/10.1016/j.cscm.2022.e01290
  • Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Majeed, S., Mohammed, A., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part V: Mixture Design, Preparation, Mixing, Casting, And Curing. Case Studies in Construction Materials, 17(e01363).
  • Akın, S., Kaplan, A. N., & Özel, C. (2022). Farklı Uzunluktaki Doğal Liflerin Beton Performansı Üzerine Etkileri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 6(2), s. 80-84.
  • Alkayış, M. H., & Başyiğit, C. (2021). Lif Katkısının Beton Darbe Dayanımına Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (24), s. 455-462.
  • Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review. The Scientific World Journal, doi:http://dx.doi.org/10.1155/2014/875082
  • Badugea, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., . . . Aye, L. (2021). Improving Performance Of Additive Manufactured (3D Printed) Concrete: A Review On Material Mix Design, Processing, İnterlayer Bonding, And Reinforcing Methods. Structures, 29, s. 1597-1609. doi:https://doi.org/10.1016/j.istruc.2020.12.061
  • Balapour, M., Joshaghani, A., & Althoey, F. (2018). Nano-Sio2 Contribution To Mechanical, Durability, Fresh And Microstructural Characteristics Of Concrete: A Review. Construction and Building Materials, 181, doi:https://doi.org/10.1016/j.conbuildmat.2018.05.266
  • Beton- Çelik Tel Takviyeli- Çelik Telleri- Betona Karıştırma ve Kontrol Kuralları. (2015). Ankara, Türkiye: Türk Standardları Enstitüsü.
  • Betonarme Yapıların Tasarım Ve Yapım Kuralları. (2000). s. 65. Ankara, Türkiye: Türk Standardları Enstitüsü.
  • Biswas, R. K., Ahmed, F. B., Haque, E., Provasha, A. A., Hasan, Z., Hayat, F., & Sen, D. (2021). Review Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete. Applied mechanics, 2(3), s. 501-515. doi:https://doi.org/10.3390/applmech2030028
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano Reinforced Cement And Concrete Composites And New Perspective From Graphene Oxide. Construction and Building Materials, 73, s. 113-124. doi:https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Demirhan, S. (2017). Nano Malzemeler İle Modifiye Edilmiş Yüksek Performanslı Hibrid Lif Donatılı Betonlar (Doktora tezi). Erişim adresi: https://acikbilim.yok.gov.tr/
  • Dunuweera, S. P., & Rajapakse, R. M. (2018). Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering, s. 1-11. doi:https://doi.org/10.1155/2018/4158682
  • Fehmi Çivici, E. G. (2016). Karma Lifli Betonların Tokluk Açısından Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), s. 365-376.
  • Gou, M., Zhou, L., & Then, N. W. (2019). Utilization of Tailings In Cement And Concrete:A review. Science and Engineering of Composite Materials, 26(1), s. 449-464. doi:https://doi.org/10.1515/secm-2019-0029
  • Grace, M. O., Ede, A. N., Olofinnade, O., Bamigboye, G., Okeke, C., Oyebisi, S. O., & Arum, C. (2019). Influence of Some Selected Supplementary Cementitious Materials on Workability and Compressive Strength of Concrete – A Review. In IOP Conference Series: Materials Science and Engineering. 640. doi:doi:10.1088/1757-899X/640/1/012071
  • Guleria , D., & Kamboj, J. (2016). Study of Mechanical Properties of High Strength Concrete by Using Steel Fiber – A Review. International Journal of Civil Engineering and Technology, 7(5), s. 63-71. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5 adresinden alındı
  • Hassanpour, M., Shafigh, P., & Mahmud, H. B. (2012). Lightweight Aggregate Concrete Fiber Reinforcement – A Review. Construction and Building Materials, 37, s. 452-461. doi:https://doi.org/10.1016/j.conbuildmat.2012.07.071
  • Hossain, M. M., Karim, M. R., Hasan, M., Hossain, M. K., & Zain, M. F. (2016). Durability Of Mortar And Concrete Made Up Of Pozzolans As A Partial Replacement Of Cement: A Review. Construction and Building Materials, 116, s. 128-140. doi:https://doi.org/10.1016/j.conbuildmat.2016.04.147
  • Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., & Li, H. (2017). Effect Of Constituents On Rheological Properties Of Fresh Concrete-A Review. Cement and Concrete Composites, 83, s. 146-159. doi:https://doi.org/10.1016/j.cemconcomp.2017.07.016
  • Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A Review On Concrete Fracture Energy And Effective Parameters. Cement And Concrete Research, 120, s. 294-321. doi:https://doi.org/10.1016/j.cemconres.2019.03.013
  • Khan, M. I., Abbas, Y. M., & Fares, G. (2017). Review Of High And Ultrahigh Performance Cementitious Composites İncorporating Various Combinations Of Fibers And Ultrafines. Journal of King Saud University - Engineering Sciences, 29(4), s. 339-347. doi:https://doi.org/10.1016/j.jksues.2017.03.006
  • Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects Of Different Mineral Admixtures On The Properties Of Fresh Concrete. The Scientific World Journal, s. 1-11. doi: https://doi.org/10.1155/2014/986567
  • Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), s. 1609-1627.
  • Kızılkanat, A. B., Kabay, N., Akyüncü, V., & Erdoğan, G. (2014). Bazalt Lifler Ve Bazalt Lifli Betonların Mekanik Özellikleri . Mühendislik ve Fen Bilimleri Dergisi (32), s. 444-442.
  • Kozak, M. (2013). Çelik Lifli Betonlar ve Kullanım Alanlarının Araştırılması. Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 3(5), s. 26-35.
  • Kurt, G. (2006). Lif içeriği ve su/çimento oranının fibrobetonun mekanik davranışına etkileri (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
  • Marvila , M. T., de Azevedo , A. G., de Matos, P. R., Monteiro , S. N., & Vieira , C. F. (2021). Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 14(15), s. 1-36. doi:https://doi.org/10.3390/ma14154304
  • Mukhopadhyay, S., & Khatana, S. (2015). A Review On The Use Of Fibers İn Reinforced Cementitious Concrete. Journal of Industrial Textiles, 45(2), s. 239-264. doi:https://doi.org/10.1177/1528083714529806
  • Nazar, S., Yang, J., Thomas, B. S., Azim, I., & Rehman, S. K. (2020). Rheological Properties Of Cementitious Composites With And Without Nano-Materials: A Comprehensive Review. Journal of Cleaner Production, 272(122701). doi:https://doi.org/10.1016/j.jclepro.2020.122701
  • Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. ( 2017). Applications Of Using Nano Material İn Concrete: A Review. Construction and Building Materials, 133, s. 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization And Efficiency Of Ground Granulated Blast Furnace Slag On Concrete Properties – A Review. Construction and Building Materials, 105, s. 423-434. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.153
  • Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid Short Fiber Reinforcement System İn Concrete: A Review. Construction and Building Materials, 142, s. 280-294. doi:https://doi.org/10.1016/j.conbuildmat.2017.03.059
  • Paul, S. C., Van Rooyen, A. S., Van Zijl, G. P., & Petrik, L. F. (2018). Properties Of Cement-Based Composites Using Nanoparticles: A Comprehensive Review. Construction and Building Materials, 189, s. 1019-1034. doi:https://doi.org/10.1016/j.conbuildmat.2018.09.062
  • Plank, J., Sakai, E., Miao, C. W., & Hong, J. X. (2015). Chemical Admixtures — Chemistry, Applications And Their İmpact On Concrete Microstructure And Durability. Cement and Concrete Research, 78, s. 81-99. doi:https://doi.org/10.1016/j.cemconres.2015.05.016
  • Rashad, A. M. (2014). A Comprehensive Overview About The İnfluence Of Different Admixtures And Additives On The Properties Of Alkali-Activated Fly Ash. Materials & Design, 53, s. 1005-1025. doi:https://doi.org/10.1016/j.matdes.2013.07.074
  • Reches, Y. (2018). Nanoparticles As Concrete Additives: Review And Perspectives. Construction and Building Materials, 175, s. 483-495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214
  • Sarı, M. (2013). Farklı tipteki liflerin betonun mekanik davranışına etkisi (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
  • Scherer, G. (2015). Drying, Shrinkage, and Cracking of Cementitious Materials. Transport in Porous Media, 110, s. 311–331. doi:DOI 10.1007/s11242-015-0518-5
  • Shaikh, F. A., Luhar, S., Arel, H. Ş., & Luhar, I. (2020). Performance Evaluation Of Ultrahigh Performance Fibre Reinforced Concrete – A Review. Construction and Building Materials, 232. doi:https://doi.org/10.1016/j.conbuildmat.2019.117152
  • Sidiq, A., Gravina, R., & Giustozzi, F. (2019). Is Concrete Healing Really Efficient? A Review. Construction and Building Materials, 205, s. 257-273. doi:https://doi.org/10.1016/j.conbuildmat.2019.02.002
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial Role Of Nanosilica İn Cement Based Materials – A Review. Construction and Building Materials, 47, s. 1069-1077. doi:https://doi.org/10.1016/j.conbuildmat.2013.05.052
  • Soufeiani, L., Raman, S. N., Jumaat, M. Z., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber-Reinforced Concrete Subjected To Dynamic Loading – A Review. Engineering Structures, 124, s. 405-417. doi:https://doi.org/10.1016/j.engstruct.2016.06.029
  • Şahan, M.F., Ünsal, İ. (2021). Farklı Lif Oranına Sahip Çelik Lif Takviyeli Beton Kirişlerde Çarpma Etkisi. International Journal of Innovative Engineering Applications, 5(2), s. 212-217. DOI: 10.46460/ijiea.986369
  • Şimşek, O., Toklu, K., & Ünal, M. T. (2021). Çelik Liflerin Geometrik Şeklinin ve Oranının Beton Özelleriklerine Etkisinin Araştırılması. Politeknik Dergisi, 24(2), s. 409-415. doi: 10.2339/politeknik.691640
  • Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. A. ( 2022). Durability And Mechanical Properties Of Cement Concrete Comprising Pozzolanic Materials With Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17(e01429). doi:https://doi.org/10.1016/j.cscm.2022.e01429
  • Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass Ashes From Agricultural Wastes As Supplementary Cementitious Materials Or Aggregate Replacement İn Cement/Geopolymer Concrete: A Comprehensive Review. Journal of Building Engineering, 40(102332). doi:https://doi.org/10.1016/j.jobe.2021.102332
  • Tiberti, G., Germano, F., Mudadu, A., & Plizzari, G. A. (2018). An Overview Of The Flexural Post-Cracking Behavior Of Steel Fiber Reinforced Concrete. Structural Concrete, 19(3), s. 695-718. doi:https://doi.org/10.1002/suco.201700068
  • Tittelboom, K. V., & De Belie, N. (2013). Self-Healing in Cementitious Materials—A Review . Materials , 6(6), s. 2182-2217. doi:https://doi.org/10.3390/ma6062182
  • Türk, K., & Kına, C. (2017). Çimento Esaslı Kompozitlerde Karma Lif Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), s. 671-678. doi:doi: 10.5505/pajes.2016.17047
  • Türkmenoğlu, Z. F., & Varol, O. O. (2016). Lifli Beton Türleri Ve Kullanım Alanları. 1st International Mediterranean Science and Engineering Congress, (s. 3792-3795). Adana.
  • Wu, H., Lin, X., & Zhou, A. (2020). A Review Of Mechanical Properties Of Fibre Reinforced Concrete At Elevated Temperatures. Cement and Concrete Research, 135. doi:https://doi.org/10.1016/j.cemconres.2020.106117
  • Yazıcı, Ş. (2017). Çelik Lif Boyu Ve Kullanım Oranının Çelik Lifli Betonun Özelliklerine Etkisi. 5th International Symposium on Innovative Technologies in Engineering and Science. Bakü.
  • Yoo, D.-Y., & Banthia, N. (2016). Mechanical Properties Of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cement and Concrete Composites, 73, s. 267-280. doi:https://doi.org/10.1016/j.cemconcomp.2016.08.001
  • Yoo, D.-Y., & Banthia, N. (2019). Impact Resistance Of Fiber-Reinforced Concrete – A Review. Cement and Concrete Composites, 104(103389). doi:https://doi.org/10.1016/j.cemconcomp.2019.103389
  • Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous Micro-Fibers As İntrinsic Reinforcement For Ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 184(107741). doi:https://doi.org/10.1016/j.compositesb.2020.107741
  • Zhang, P., Wittmann, F. H., Lura, P., Müller, H. S., Han, S., & Zhao, T. (2018). Application Of Neutron İmaging To İnvestigate Fundamental Aspects Of Durability Of Cement-Based Materials: A Review. Cement and Concrete Research, 108, s. 152-166. doi:https://doi.org/10.1016/j.cemconres.2018.03.003

Effect of Fiber Usage and Mixture Parameters on Crack Development and Crack Control in Cement Based Composites: Review

Yıl 2024, Cilt: 14 Sayı: 1, 422 - 436, 01.03.2024
https://doi.org/10.21597/jist.1342361

Öz

Although concrete can meet high compressive strength, it is a building material that is sensitive to crack formation due to its inherently low tensile and bending strength. Concrete is a multi-phase composite material, and its behavior varies depending on the properties of the components that make it up. Each mixture parameter has significant effects on the crack development mechanism. In the current review study, the crack development mechanism in cement-based materials and the effects of mixture parameters on the crack formation mechanism were investigated with an extensive literature review, especially based on the studies carried out in the last 10 years. As a result of the literature research, obtaining maximum aggregate particle density by optimizing low water/cement ratio, particle size distribution and mixture ratios, replacing some of the cement with optimum amount of mineral additives and nano materials, hybrid combination of brittle cement matrix with various fibers, increasing the strength of concrete, It has been understood that it increases the resistance against crack formation by improving its ductility and toughness.

Kaynakça

  • Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-Performance Fiber-Reinforced Concrete: A Review. Journal of Materials Science, 51, s. 6517–6551. doi:https://doi.org/10.1007/s10853-016-9917-4
  • Akeed, M. H., Qaidi, S., Ahmed, H. U., Faraj, R. H., Mohammed, A. S., Emad, W., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part II: Hydration And Microstructure. Case Studies in Construction Materials, 17(e01289). doi:https://doi.org/10.1016/j.cscm.2022.e01289
  • Akeed, M. H., Qaidi, S., Ahmed, H. U., Emad, W., Faraj, R. H., Mohammed, A. S., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part III: Fresh And Hardened Properties. Case Studies in Construction Materials, 17(e01265). doi:https://doi.org/10.1016/j.cscm.2022.e01265
  • Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Mohammed, A., Emad, W., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part I: Developments, Principles, Raw Materials. Case Studies in Construction Materials, 17(e01290). doi:https://doi.org/10.1016/j.cscm.2022.e01290
  • Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Majeed, S., Mohammed, A., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part V: Mixture Design, Preparation, Mixing, Casting, And Curing. Case Studies in Construction Materials, 17(e01363).
  • Akın, S., Kaplan, A. N., & Özel, C. (2022). Farklı Uzunluktaki Doğal Liflerin Beton Performansı Üzerine Etkileri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 6(2), s. 80-84.
  • Alkayış, M. H., & Başyiğit, C. (2021). Lif Katkısının Beton Darbe Dayanımına Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (24), s. 455-462.
  • Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review. The Scientific World Journal, doi:http://dx.doi.org/10.1155/2014/875082
  • Badugea, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., . . . Aye, L. (2021). Improving Performance Of Additive Manufactured (3D Printed) Concrete: A Review On Material Mix Design, Processing, İnterlayer Bonding, And Reinforcing Methods. Structures, 29, s. 1597-1609. doi:https://doi.org/10.1016/j.istruc.2020.12.061
  • Balapour, M., Joshaghani, A., & Althoey, F. (2018). Nano-Sio2 Contribution To Mechanical, Durability, Fresh And Microstructural Characteristics Of Concrete: A Review. Construction and Building Materials, 181, doi:https://doi.org/10.1016/j.conbuildmat.2018.05.266
  • Beton- Çelik Tel Takviyeli- Çelik Telleri- Betona Karıştırma ve Kontrol Kuralları. (2015). Ankara, Türkiye: Türk Standardları Enstitüsü.
  • Betonarme Yapıların Tasarım Ve Yapım Kuralları. (2000). s. 65. Ankara, Türkiye: Türk Standardları Enstitüsü.
  • Biswas, R. K., Ahmed, F. B., Haque, E., Provasha, A. A., Hasan, Z., Hayat, F., & Sen, D. (2021). Review Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete. Applied mechanics, 2(3), s. 501-515. doi:https://doi.org/10.3390/applmech2030028
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano Reinforced Cement And Concrete Composites And New Perspective From Graphene Oxide. Construction and Building Materials, 73, s. 113-124. doi:https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Demirhan, S. (2017). Nano Malzemeler İle Modifiye Edilmiş Yüksek Performanslı Hibrid Lif Donatılı Betonlar (Doktora tezi). Erişim adresi: https://acikbilim.yok.gov.tr/
  • Dunuweera, S. P., & Rajapakse, R. M. (2018). Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering, s. 1-11. doi:https://doi.org/10.1155/2018/4158682
  • Fehmi Çivici, E. G. (2016). Karma Lifli Betonların Tokluk Açısından Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), s. 365-376.
  • Gou, M., Zhou, L., & Then, N. W. (2019). Utilization of Tailings In Cement And Concrete:A review. Science and Engineering of Composite Materials, 26(1), s. 449-464. doi:https://doi.org/10.1515/secm-2019-0029
  • Grace, M. O., Ede, A. N., Olofinnade, O., Bamigboye, G., Okeke, C., Oyebisi, S. O., & Arum, C. (2019). Influence of Some Selected Supplementary Cementitious Materials on Workability and Compressive Strength of Concrete – A Review. In IOP Conference Series: Materials Science and Engineering. 640. doi:doi:10.1088/1757-899X/640/1/012071
  • Guleria , D., & Kamboj, J. (2016). Study of Mechanical Properties of High Strength Concrete by Using Steel Fiber – A Review. International Journal of Civil Engineering and Technology, 7(5), s. 63-71. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5 adresinden alındı
  • Hassanpour, M., Shafigh, P., & Mahmud, H. B. (2012). Lightweight Aggregate Concrete Fiber Reinforcement – A Review. Construction and Building Materials, 37, s. 452-461. doi:https://doi.org/10.1016/j.conbuildmat.2012.07.071
  • Hossain, M. M., Karim, M. R., Hasan, M., Hossain, M. K., & Zain, M. F. (2016). Durability Of Mortar And Concrete Made Up Of Pozzolans As A Partial Replacement Of Cement: A Review. Construction and Building Materials, 116, s. 128-140. doi:https://doi.org/10.1016/j.conbuildmat.2016.04.147
  • Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., & Li, H. (2017). Effect Of Constituents On Rheological Properties Of Fresh Concrete-A Review. Cement and Concrete Composites, 83, s. 146-159. doi:https://doi.org/10.1016/j.cemconcomp.2017.07.016
  • Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A Review On Concrete Fracture Energy And Effective Parameters. Cement And Concrete Research, 120, s. 294-321. doi:https://doi.org/10.1016/j.cemconres.2019.03.013
  • Khan, M. I., Abbas, Y. M., & Fares, G. (2017). Review Of High And Ultrahigh Performance Cementitious Composites İncorporating Various Combinations Of Fibers And Ultrafines. Journal of King Saud University - Engineering Sciences, 29(4), s. 339-347. doi:https://doi.org/10.1016/j.jksues.2017.03.006
  • Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects Of Different Mineral Admixtures On The Properties Of Fresh Concrete. The Scientific World Journal, s. 1-11. doi: https://doi.org/10.1155/2014/986567
  • Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), s. 1609-1627.
  • Kızılkanat, A. B., Kabay, N., Akyüncü, V., & Erdoğan, G. (2014). Bazalt Lifler Ve Bazalt Lifli Betonların Mekanik Özellikleri . Mühendislik ve Fen Bilimleri Dergisi (32), s. 444-442.
  • Kozak, M. (2013). Çelik Lifli Betonlar ve Kullanım Alanlarının Araştırılması. Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 3(5), s. 26-35.
  • Kurt, G. (2006). Lif içeriği ve su/çimento oranının fibrobetonun mekanik davranışına etkileri (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
  • Marvila , M. T., de Azevedo , A. G., de Matos, P. R., Monteiro , S. N., & Vieira , C. F. (2021). Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 14(15), s. 1-36. doi:https://doi.org/10.3390/ma14154304
  • Mukhopadhyay, S., & Khatana, S. (2015). A Review On The Use Of Fibers İn Reinforced Cementitious Concrete. Journal of Industrial Textiles, 45(2), s. 239-264. doi:https://doi.org/10.1177/1528083714529806
  • Nazar, S., Yang, J., Thomas, B. S., Azim, I., & Rehman, S. K. (2020). Rheological Properties Of Cementitious Composites With And Without Nano-Materials: A Comprehensive Review. Journal of Cleaner Production, 272(122701). doi:https://doi.org/10.1016/j.jclepro.2020.122701
  • Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. ( 2017). Applications Of Using Nano Material İn Concrete: A Review. Construction and Building Materials, 133, s. 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization And Efficiency Of Ground Granulated Blast Furnace Slag On Concrete Properties – A Review. Construction and Building Materials, 105, s. 423-434. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.153
  • Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid Short Fiber Reinforcement System İn Concrete: A Review. Construction and Building Materials, 142, s. 280-294. doi:https://doi.org/10.1016/j.conbuildmat.2017.03.059
  • Paul, S. C., Van Rooyen, A. S., Van Zijl, G. P., & Petrik, L. F. (2018). Properties Of Cement-Based Composites Using Nanoparticles: A Comprehensive Review. Construction and Building Materials, 189, s. 1019-1034. doi:https://doi.org/10.1016/j.conbuildmat.2018.09.062
  • Plank, J., Sakai, E., Miao, C. W., & Hong, J. X. (2015). Chemical Admixtures — Chemistry, Applications And Their İmpact On Concrete Microstructure And Durability. Cement and Concrete Research, 78, s. 81-99. doi:https://doi.org/10.1016/j.cemconres.2015.05.016
  • Rashad, A. M. (2014). A Comprehensive Overview About The İnfluence Of Different Admixtures And Additives On The Properties Of Alkali-Activated Fly Ash. Materials & Design, 53, s. 1005-1025. doi:https://doi.org/10.1016/j.matdes.2013.07.074
  • Reches, Y. (2018). Nanoparticles As Concrete Additives: Review And Perspectives. Construction and Building Materials, 175, s. 483-495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214
  • Sarı, M. (2013). Farklı tipteki liflerin betonun mekanik davranışına etkisi (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
  • Scherer, G. (2015). Drying, Shrinkage, and Cracking of Cementitious Materials. Transport in Porous Media, 110, s. 311–331. doi:DOI 10.1007/s11242-015-0518-5
  • Shaikh, F. A., Luhar, S., Arel, H. Ş., & Luhar, I. (2020). Performance Evaluation Of Ultrahigh Performance Fibre Reinforced Concrete – A Review. Construction and Building Materials, 232. doi:https://doi.org/10.1016/j.conbuildmat.2019.117152
  • Sidiq, A., Gravina, R., & Giustozzi, F. (2019). Is Concrete Healing Really Efficient? A Review. Construction and Building Materials, 205, s. 257-273. doi:https://doi.org/10.1016/j.conbuildmat.2019.02.002
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial Role Of Nanosilica İn Cement Based Materials – A Review. Construction and Building Materials, 47, s. 1069-1077. doi:https://doi.org/10.1016/j.conbuildmat.2013.05.052
  • Soufeiani, L., Raman, S. N., Jumaat, M. Z., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber-Reinforced Concrete Subjected To Dynamic Loading – A Review. Engineering Structures, 124, s. 405-417. doi:https://doi.org/10.1016/j.engstruct.2016.06.029
  • Şahan, M.F., Ünsal, İ. (2021). Farklı Lif Oranına Sahip Çelik Lif Takviyeli Beton Kirişlerde Çarpma Etkisi. International Journal of Innovative Engineering Applications, 5(2), s. 212-217. DOI: 10.46460/ijiea.986369
  • Şimşek, O., Toklu, K., & Ünal, M. T. (2021). Çelik Liflerin Geometrik Şeklinin ve Oranının Beton Özelleriklerine Etkisinin Araştırılması. Politeknik Dergisi, 24(2), s. 409-415. doi: 10.2339/politeknik.691640
  • Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. A. ( 2022). Durability And Mechanical Properties Of Cement Concrete Comprising Pozzolanic Materials With Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17(e01429). doi:https://doi.org/10.1016/j.cscm.2022.e01429
  • Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass Ashes From Agricultural Wastes As Supplementary Cementitious Materials Or Aggregate Replacement İn Cement/Geopolymer Concrete: A Comprehensive Review. Journal of Building Engineering, 40(102332). doi:https://doi.org/10.1016/j.jobe.2021.102332
  • Tiberti, G., Germano, F., Mudadu, A., & Plizzari, G. A. (2018). An Overview Of The Flexural Post-Cracking Behavior Of Steel Fiber Reinforced Concrete. Structural Concrete, 19(3), s. 695-718. doi:https://doi.org/10.1002/suco.201700068
  • Tittelboom, K. V., & De Belie, N. (2013). Self-Healing in Cementitious Materials—A Review . Materials , 6(6), s. 2182-2217. doi:https://doi.org/10.3390/ma6062182
  • Türk, K., & Kına, C. (2017). Çimento Esaslı Kompozitlerde Karma Lif Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), s. 671-678. doi:doi: 10.5505/pajes.2016.17047
  • Türkmenoğlu, Z. F., & Varol, O. O. (2016). Lifli Beton Türleri Ve Kullanım Alanları. 1st International Mediterranean Science and Engineering Congress, (s. 3792-3795). Adana.
  • Wu, H., Lin, X., & Zhou, A. (2020). A Review Of Mechanical Properties Of Fibre Reinforced Concrete At Elevated Temperatures. Cement and Concrete Research, 135. doi:https://doi.org/10.1016/j.cemconres.2020.106117
  • Yazıcı, Ş. (2017). Çelik Lif Boyu Ve Kullanım Oranının Çelik Lifli Betonun Özelliklerine Etkisi. 5th International Symposium on Innovative Technologies in Engineering and Science. Bakü.
  • Yoo, D.-Y., & Banthia, N. (2016). Mechanical Properties Of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cement and Concrete Composites, 73, s. 267-280. doi:https://doi.org/10.1016/j.cemconcomp.2016.08.001
  • Yoo, D.-Y., & Banthia, N. (2019). Impact Resistance Of Fiber-Reinforced Concrete – A Review. Cement and Concrete Composites, 104(103389). doi:https://doi.org/10.1016/j.cemconcomp.2019.103389
  • Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous Micro-Fibers As İntrinsic Reinforcement For Ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 184(107741). doi:https://doi.org/10.1016/j.compositesb.2020.107741
  • Zhang, P., Wittmann, F. H., Lura, P., Müller, H. S., Han, S., & Zhao, T. (2018). Application Of Neutron İmaging To İnvestigate Fundamental Aspects Of Durability Of Cement-Based Materials: A Review. Cement and Concrete Research, 108, s. 152-166. doi:https://doi.org/10.1016/j.cemconres.2018.03.003
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri, Yapı Mühendisliği, Çimento Teknolojisi
Bölüm Metalurji ve Malzeme Mühendisliği
Yazarlar

Berfin Ramazanoğlu 0000-0001-5263-1531

Necim Kaya 0000-0003-1478-761X

Erken Görünüm Tarihi 20 Şubat 2024
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 13 Ağustos 2023
Kabul Tarihi 26 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Ramazanoğlu, B., & Kaya, N. (2024). Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Journal of the Institute of Science and Technology, 14(1), 422-436. https://doi.org/10.21597/jist.1342361
AMA Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. Mart 2024;14(1):422-436. doi:10.21597/jist.1342361
Chicago Ramazanoğlu, Berfin, ve Necim Kaya. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology 14, sy. 1 (Mart 2024): 422-36. https://doi.org/10.21597/jist.1342361.
EndNote Ramazanoğlu B, Kaya N (01 Mart 2024) Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Journal of the Institute of Science and Technology 14 1 422–436.
IEEE B. Ramazanoğlu ve N. Kaya, “Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 1, ss. 422–436, 2024, doi: 10.21597/jist.1342361.
ISNAD Ramazanoğlu, Berfin - Kaya, Necim. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology 14/1 (Mart 2024), 422-436. https://doi.org/10.21597/jist.1342361.
JAMA Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:422–436.
MLA Ramazanoğlu, Berfin ve Necim Kaya. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology, c. 14, sy. 1, 2024, ss. 422-36, doi:10.21597/jist.1342361.
Vancouver Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):422-36.