Beton, yüksek basınç dayanımlarını karşılayabilmesine rağmen doğası gereği çekme ve eğilme dayanımı düşük olduğundan çatlak oluşumuna karşı hassas bir yapı malzemesidir. Beton, çok fazlı kompozit bir malzeme olup, davranışı kendisini oluşturan bileşenlerin özelliklerine göre değişkenlik göstermektedir. Her bir karışım parametresinin çatlak gelişim mekanizması üzerinde önemli etkileri bulunmaktadır. Mevcut derleme çalışmasında çimento esaslı malzemelerde çatlak gelişim mekanizması ve karışım parametrelerinin çatlak oluşum mekanizması üzerine olan etkileri özellikle son 10 yılda yapılan çalışmalar esas alınarak geniş bir literatür taramasıyla araştırılmıştır. Literatür araştırması sonucunda, düşük su/çimento oranı, parçacık boyutu dağılımı ve karışım oranlarının optimize edilmesiyle maksimum agrega parçacık yoğunluğunun elde edilmesi, çimentonun bir kısmının optimum miktarda mineral katkılar ve nano malzemelerle değiştirilmesi, gevrek özellik gösteren çimento matrisinin çeşitli liflerle hibrit kombinasyonun, betonun dayanımını, sünekliğini ve tokluğunu iyileştirerek çatlak oluşumuna karşı dayanımı arttırdığı anlaşılmıştır.
Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-Performance Fiber-Reinforced Concrete: A Review. Journal of Materials Science, 51, s. 6517–6551. doi:https://doi.org/10.1007/s10853-016-9917-4
Akeed, M. H., Qaidi, S., Ahmed, H. U., Faraj, R. H., Mohammed, A. S., Emad, W., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part II: Hydration And Microstructure. Case Studies in Construction Materials, 17(e01289). doi:https://doi.org/10.1016/j.cscm.2022.e01289
Akeed, M. H., Qaidi, S., Ahmed, H. U., Emad, W., Faraj, R. H., Mohammed, A. S., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part III: Fresh And Hardened Properties. Case Studies in Construction Materials, 17(e01265). doi:https://doi.org/10.1016/j.cscm.2022.e01265
Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Mohammed, A., Emad, W., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part I: Developments, Principles, Raw Materials. Case Studies in Construction Materials, 17(e01290). doi:https://doi.org/10.1016/j.cscm.2022.e01290
Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Majeed, S., Mohammed, A., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part V: Mixture Design, Preparation, Mixing, Casting, And Curing. Case Studies in Construction Materials, 17(e01363).
Akın, S., Kaplan, A. N., & Özel, C. (2022). Farklı Uzunluktaki Doğal Liflerin Beton Performansı Üzerine Etkileri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 6(2), s. 80-84.
Alkayış, M. H., & Başyiğit, C. (2021). Lif Katkısının Beton Darbe Dayanımına Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (24), s. 455-462.
Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review. The Scientific World Journal, doi:http://dx.doi.org/10.1155/2014/875082
Badugea, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., . . . Aye, L. (2021). Improving Performance Of Additive Manufactured (3D Printed) Concrete: A Review On Material Mix Design, Processing, İnterlayer Bonding, And Reinforcing Methods. Structures, 29, s. 1597-1609. doi:https://doi.org/10.1016/j.istruc.2020.12.061
Balapour, M., Joshaghani, A., & Althoey, F. (2018). Nano-Sio2 Contribution To Mechanical, Durability, Fresh And Microstructural Characteristics Of Concrete: A Review. Construction and Building Materials, 181, doi:https://doi.org/10.1016/j.conbuildmat.2018.05.266
Beton- Çelik Tel Takviyeli- Çelik Telleri- Betona Karıştırma ve Kontrol Kuralları. (2015). Ankara, Türkiye: Türk Standardları Enstitüsü.
Betonarme Yapıların Tasarım Ve Yapım Kuralları. (2000). s. 65. Ankara, Türkiye: Türk Standardları Enstitüsü.
Biswas, R. K., Ahmed, F. B., Haque, E., Provasha, A. A., Hasan, Z., Hayat, F., & Sen, D. (2021). Review Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete. Applied mechanics, 2(3), s. 501-515. doi:https://doi.org/10.3390/applmech2030028
Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano Reinforced Cement And Concrete Composites And New Perspective From Graphene Oxide. Construction and Building Materials, 73, s. 113-124. doi:https://doi.org/10.1016/j.conbuildmat.2014.09.040
Demirhan, S. (2017). Nano Malzemeler İle Modifiye Edilmiş Yüksek Performanslı Hibrid Lif Donatılı Betonlar (Doktora tezi). Erişim adresi: https://acikbilim.yok.gov.tr/
Dunuweera, S. P., & Rajapakse, R. M. (2018). Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering, s. 1-11. doi:https://doi.org/10.1155/2018/4158682
Fehmi Çivici, E. G. (2016). Karma Lifli Betonların Tokluk Açısından Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), s. 365-376.
Gou, M., Zhou, L., & Then, N. W. (2019). Utilization of Tailings In Cement And Concrete:A review. Science and Engineering of Composite Materials, 26(1), s. 449-464. doi:https://doi.org/10.1515/secm-2019-0029
Grace, M. O., Ede, A. N., Olofinnade, O., Bamigboye, G., Okeke, C., Oyebisi, S. O., & Arum, C. (2019). Influence of Some Selected Supplementary Cementitious Materials on Workability and Compressive Strength of Concrete – A Review. In IOP Conference Series: Materials Science and Engineering. 640. doi:doi:10.1088/1757-899X/640/1/012071
Guleria , D., & Kamboj, J. (2016). Study of Mechanical Properties of High Strength Concrete by Using Steel Fiber – A Review. International Journal of Civil Engineering and Technology, 7(5), s. 63-71. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5 adresinden alındı
Hassanpour, M., Shafigh, P., & Mahmud, H. B. (2012). Lightweight Aggregate Concrete Fiber Reinforcement – A Review. Construction and Building Materials, 37, s. 452-461. doi:https://doi.org/10.1016/j.conbuildmat.2012.07.071
Hossain, M. M., Karim, M. R., Hasan, M., Hossain, M. K., & Zain, M. F. (2016). Durability Of Mortar And Concrete Made Up Of Pozzolans As A Partial Replacement Of Cement: A Review. Construction and Building Materials, 116, s. 128-140. doi:https://doi.org/10.1016/j.conbuildmat.2016.04.147
Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., & Li, H. (2017). Effect Of Constituents On Rheological Properties Of Fresh Concrete-A Review. Cement and Concrete Composites, 83, s. 146-159. doi:https://doi.org/10.1016/j.cemconcomp.2017.07.016
Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A Review On Concrete Fracture Energy And Effective Parameters. Cement And Concrete Research, 120, s. 294-321. doi:https://doi.org/10.1016/j.cemconres.2019.03.013
Khan, M. I., Abbas, Y. M., & Fares, G. (2017). Review Of High And Ultrahigh Performance Cementitious Composites İncorporating Various Combinations Of Fibers And Ultrafines. Journal of King Saud University - Engineering Sciences, 29(4), s. 339-347. doi:https://doi.org/10.1016/j.jksues.2017.03.006
Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects Of Different Mineral Admixtures On The Properties Of Fresh Concrete. The Scientific World Journal, s. 1-11. doi: https://doi.org/10.1155/2014/986567
Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), s. 1609-1627.
Kızılkanat, A. B., Kabay, N., Akyüncü, V., & Erdoğan, G. (2014). Bazalt Lifler Ve Bazalt Lifli Betonların Mekanik Özellikleri . Mühendislik ve Fen Bilimleri Dergisi (32), s. 444-442.
Kozak, M. (2013). Çelik Lifli Betonlar ve Kullanım Alanlarının Araştırılması. Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 3(5), s. 26-35.
Kurt, G. (2006). Lif içeriği ve su/çimento oranının fibrobetonun mekanik davranışına etkileri (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
Marvila , M. T., de Azevedo , A. G., de Matos, P. R., Monteiro , S. N., & Vieira , C. F. (2021). Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 14(15), s. 1-36. doi:https://doi.org/10.3390/ma14154304
Mukhopadhyay, S., & Khatana, S. (2015). A Review On The Use Of Fibers İn Reinforced Cementitious Concrete. Journal of Industrial Textiles, 45(2), s. 239-264. doi:https://doi.org/10.1177/1528083714529806
Nazar, S., Yang, J., Thomas, B. S., Azim, I., & Rehman, S. K. (2020). Rheological Properties Of Cementitious Composites With And Without Nano-Materials: A Comprehensive Review. Journal of Cleaner Production, 272(122701). doi:https://doi.org/10.1016/j.jclepro.2020.122701
Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. ( 2017). Applications Of Using Nano Material İn Concrete: A Review. Construction and Building Materials, 133, s. 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization And Efficiency Of Ground Granulated Blast Furnace Slag On Concrete Properties – A Review. Construction and Building Materials, 105, s. 423-434. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.153
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid Short Fiber Reinforcement System İn Concrete: A Review. Construction and Building Materials, 142, s. 280-294. doi:https://doi.org/10.1016/j.conbuildmat.2017.03.059
Paul, S. C., Van Rooyen, A. S., Van Zijl, G. P., & Petrik, L. F. (2018). Properties Of Cement-Based Composites Using Nanoparticles: A Comprehensive Review. Construction and Building Materials, 189, s. 1019-1034. doi:https://doi.org/10.1016/j.conbuildmat.2018.09.062
Plank, J., Sakai, E., Miao, C. W., & Hong, J. X. (2015). Chemical Admixtures — Chemistry, Applications And Their İmpact On Concrete Microstructure And Durability. Cement and Concrete Research, 78, s. 81-99. doi:https://doi.org/10.1016/j.cemconres.2015.05.016
Rashad, A. M. (2014). A Comprehensive Overview About The İnfluence Of Different Admixtures And Additives On The Properties Of Alkali-Activated Fly Ash. Materials & Design, 53, s. 1005-1025. doi:https://doi.org/10.1016/j.matdes.2013.07.074
Reches, Y. (2018). Nanoparticles As Concrete Additives: Review And Perspectives. Construction and Building Materials, 175, s. 483-495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214
Sarı, M. (2013). Farklı tipteki liflerin betonun mekanik davranışına etkisi (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
Scherer, G. (2015). Drying, Shrinkage, and Cracking of Cementitious Materials. Transport in Porous Media, 110, s. 311–331. doi:DOI 10.1007/s11242-015-0518-5
Shaikh, F. A., Luhar, S., Arel, H. Ş., & Luhar, I. (2020). Performance Evaluation Of Ultrahigh Performance Fibre Reinforced Concrete – A Review. Construction and Building Materials, 232. doi:https://doi.org/10.1016/j.conbuildmat.2019.117152
Sidiq, A., Gravina, R., & Giustozzi, F. (2019). Is Concrete Healing Really Efficient? A Review. Construction and Building Materials, 205, s. 257-273. doi:https://doi.org/10.1016/j.conbuildmat.2019.02.002
Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial Role Of Nanosilica İn Cement Based Materials – A Review. Construction and Building Materials, 47, s. 1069-1077. doi:https://doi.org/10.1016/j.conbuildmat.2013.05.052
Soufeiani, L., Raman, S. N., Jumaat, M. Z., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber-Reinforced Concrete Subjected To Dynamic Loading – A Review. Engineering Structures, 124, s. 405-417. doi:https://doi.org/10.1016/j.engstruct.2016.06.029
Şahan, M.F., Ünsal, İ. (2021). Farklı Lif Oranına Sahip Çelik Lif Takviyeli Beton Kirişlerde Çarpma Etkisi. International Journal of Innovative Engineering Applications, 5(2), s. 212-217. DOI: 10.46460/ijiea.986369
Şimşek, O., Toklu, K., & Ünal, M. T. (2021). Çelik Liflerin Geometrik Şeklinin ve Oranının Beton Özelleriklerine Etkisinin Araştırılması. Politeknik Dergisi, 24(2), s. 409-415. doi: 10.2339/politeknik.691640
Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. A. ( 2022). Durability And Mechanical Properties Of Cement Concrete Comprising Pozzolanic Materials With Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17(e01429). doi:https://doi.org/10.1016/j.cscm.2022.e01429
Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass Ashes From Agricultural Wastes As Supplementary Cementitious Materials Or Aggregate Replacement İn Cement/Geopolymer Concrete: A Comprehensive Review. Journal of Building Engineering, 40(102332). doi:https://doi.org/10.1016/j.jobe.2021.102332
Tiberti, G., Germano, F., Mudadu, A., & Plizzari, G. A. (2018). An Overview Of The Flexural Post-Cracking Behavior Of Steel Fiber Reinforced Concrete. Structural Concrete, 19(3), s. 695-718. doi:https://doi.org/10.1002/suco.201700068
Tittelboom, K. V., & De Belie, N. (2013). Self-Healing in Cementitious Materials—A Review . Materials , 6(6), s. 2182-2217. doi:https://doi.org/10.3390/ma6062182
Türk, K., & Kına, C. (2017). Çimento Esaslı Kompozitlerde Karma Lif Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), s. 671-678. doi:doi: 10.5505/pajes.2016.17047
Türkmenoğlu, Z. F., & Varol, O. O. (2016). Lifli Beton Türleri Ve Kullanım Alanları. 1st International Mediterranean Science and Engineering Congress, (s. 3792-3795). Adana.
Wu, H., Lin, X., & Zhou, A. (2020). A Review Of Mechanical Properties Of Fibre Reinforced Concrete At Elevated Temperatures. Cement and Concrete Research, 135. doi:https://doi.org/10.1016/j.cemconres.2020.106117
Yazıcı, Ş. (2017). Çelik Lif Boyu Ve Kullanım Oranının Çelik Lifli Betonun Özelliklerine Etkisi. 5th International Symposium on Innovative Technologies in Engineering and Science. Bakü.
Yoo, D.-Y., & Banthia, N. (2016). Mechanical Properties Of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cement and Concrete Composites, 73, s. 267-280. doi:https://doi.org/10.1016/j.cemconcomp.2016.08.001
Yoo, D.-Y., & Banthia, N. (2019). Impact Resistance Of Fiber-Reinforced Concrete – A Review. Cement and Concrete Composites, 104(103389). doi:https://doi.org/10.1016/j.cemconcomp.2019.103389
Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous Micro-Fibers As İntrinsic Reinforcement For Ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 184(107741). doi:https://doi.org/10.1016/j.compositesb.2020.107741
Zhang, P., Wittmann, F. H., Lura, P., Müller, H. S., Han, S., & Zhao, T. (2018). Application Of Neutron İmaging To İnvestigate Fundamental Aspects Of Durability Of Cement-Based Materials: A Review. Cement and Concrete Research, 108, s. 152-166. doi:https://doi.org/10.1016/j.cemconres.2018.03.003
Effect of Fiber Usage and Mixture Parameters on Crack Development and Crack Control in Cement Based Composites: Review
Although concrete can meet high compressive strength, it is a building material that is sensitive to crack formation due to its inherently low tensile and bending strength. Concrete is a multi-phase composite material, and its behavior varies depending on the properties of the components that make it up. Each mixture parameter has significant effects on the crack development mechanism. In the current review study, the crack development mechanism in cement-based materials and the effects of mixture parameters on the crack formation mechanism were investigated with an extensive literature review, especially based on the studies carried out in the last 10 years. As a result of the literature research, obtaining maximum aggregate particle density by optimizing low water/cement ratio, particle size distribution and mixture ratios, replacing some of the cement with optimum amount of mineral additives and nano materials, hybrid combination of brittle cement matrix with various fibers, increasing the strength of concrete, It has been understood that it increases the resistance against crack formation by improving its ductility and toughness.
Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-Performance Fiber-Reinforced Concrete: A Review. Journal of Materials Science, 51, s. 6517–6551. doi:https://doi.org/10.1007/s10853-016-9917-4
Akeed, M. H., Qaidi, S., Ahmed, H. U., Faraj, R. H., Mohammed, A. S., Emad, W., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part II: Hydration And Microstructure. Case Studies in Construction Materials, 17(e01289). doi:https://doi.org/10.1016/j.cscm.2022.e01289
Akeed, M. H., Qaidi, S., Ahmed, H. U., Emad, W., Faraj, R. H., Mohammed, A. S., . . . Azevedo, A. G. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part III: Fresh And Hardened Properties. Case Studies in Construction Materials, 17(e01265). doi:https://doi.org/10.1016/j.cscm.2022.e01265
Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Mohammed, A., Emad, W., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part I: Developments, Principles, Raw Materials. Case Studies in Construction Materials, 17(e01290). doi:https://doi.org/10.1016/j.cscm.2022.e01290
Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Majeed, S., Mohammed, A., . . . Azevedo, A. (2022). Ultra-High-Performance Fiber-Reinforced Concrete. Part V: Mixture Design, Preparation, Mixing, Casting, And Curing. Case Studies in Construction Materials, 17(e01363).
Akın, S., Kaplan, A. N., & Özel, C. (2022). Farklı Uzunluktaki Doğal Liflerin Beton Performansı Üzerine Etkileri. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, 6(2), s. 80-84.
Alkayış, M. H., & Başyiğit, C. (2021). Lif Katkısının Beton Darbe Dayanımına Etkisi. Avrupa Bilim ve Teknoloji Dergisi, (24), s. 455-462.
Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review. The Scientific World Journal, doi:http://dx.doi.org/10.1155/2014/875082
Badugea, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., . . . Aye, L. (2021). Improving Performance Of Additive Manufactured (3D Printed) Concrete: A Review On Material Mix Design, Processing, İnterlayer Bonding, And Reinforcing Methods. Structures, 29, s. 1597-1609. doi:https://doi.org/10.1016/j.istruc.2020.12.061
Balapour, M., Joshaghani, A., & Althoey, F. (2018). Nano-Sio2 Contribution To Mechanical, Durability, Fresh And Microstructural Characteristics Of Concrete: A Review. Construction and Building Materials, 181, doi:https://doi.org/10.1016/j.conbuildmat.2018.05.266
Beton- Çelik Tel Takviyeli- Çelik Telleri- Betona Karıştırma ve Kontrol Kuralları. (2015). Ankara, Türkiye: Türk Standardları Enstitüsü.
Betonarme Yapıların Tasarım Ve Yapım Kuralları. (2000). s. 65. Ankara, Türkiye: Türk Standardları Enstitüsü.
Biswas, R. K., Ahmed, F. B., Haque, E., Provasha, A. A., Hasan, Z., Hayat, F., & Sen, D. (2021). Review Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete. Applied mechanics, 2(3), s. 501-515. doi:https://doi.org/10.3390/applmech2030028
Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano Reinforced Cement And Concrete Composites And New Perspective From Graphene Oxide. Construction and Building Materials, 73, s. 113-124. doi:https://doi.org/10.1016/j.conbuildmat.2014.09.040
Demirhan, S. (2017). Nano Malzemeler İle Modifiye Edilmiş Yüksek Performanslı Hibrid Lif Donatılı Betonlar (Doktora tezi). Erişim adresi: https://acikbilim.yok.gov.tr/
Dunuweera, S. P., & Rajapakse, R. M. (2018). Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering, s. 1-11. doi:https://doi.org/10.1155/2018/4158682
Fehmi Çivici, E. G. (2016). Karma Lifli Betonların Tokluk Açısından Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), s. 365-376.
Gou, M., Zhou, L., & Then, N. W. (2019). Utilization of Tailings In Cement And Concrete:A review. Science and Engineering of Composite Materials, 26(1), s. 449-464. doi:https://doi.org/10.1515/secm-2019-0029
Grace, M. O., Ede, A. N., Olofinnade, O., Bamigboye, G., Okeke, C., Oyebisi, S. O., & Arum, C. (2019). Influence of Some Selected Supplementary Cementitious Materials on Workability and Compressive Strength of Concrete – A Review. In IOP Conference Series: Materials Science and Engineering. 640. doi:doi:10.1088/1757-899X/640/1/012071
Guleria , D., & Kamboj, J. (2016). Study of Mechanical Properties of High Strength Concrete by Using Steel Fiber – A Review. International Journal of Civil Engineering and Technology, 7(5), s. 63-71. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=5 adresinden alındı
Hassanpour, M., Shafigh, P., & Mahmud, H. B. (2012). Lightweight Aggregate Concrete Fiber Reinforcement – A Review. Construction and Building Materials, 37, s. 452-461. doi:https://doi.org/10.1016/j.conbuildmat.2012.07.071
Hossain, M. M., Karim, M. R., Hasan, M., Hossain, M. K., & Zain, M. F. (2016). Durability Of Mortar And Concrete Made Up Of Pozzolans As A Partial Replacement Of Cement: A Review. Construction and Building Materials, 116, s. 128-140. doi:https://doi.org/10.1016/j.conbuildmat.2016.04.147
Jiao, D., Shi, C., Yuan, Q., An, X., Liu, Y., & Li, H. (2017). Effect Of Constituents On Rheological Properties Of Fresh Concrete-A Review. Cement and Concrete Composites, 83, s. 146-159. doi:https://doi.org/10.1016/j.cemconcomp.2017.07.016
Khalilpour, S., BaniAsad, E., & Dehestani, M. (2019). A Review On Concrete Fracture Energy And Effective Parameters. Cement And Concrete Research, 120, s. 294-321. doi:https://doi.org/10.1016/j.cemconres.2019.03.013
Khan, M. I., Abbas, Y. M., & Fares, G. (2017). Review Of High And Ultrahigh Performance Cementitious Composites İncorporating Various Combinations Of Fibers And Ultrafines. Journal of King Saud University - Engineering Sciences, 29(4), s. 339-347. doi:https://doi.org/10.1016/j.jksues.2017.03.006
Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects Of Different Mineral Admixtures On The Properties Of Fresh Concrete. The Scientific World Journal, s. 1-11. doi: https://doi.org/10.1155/2014/986567
Kızılırmak, C., Aydın, S., & Yardımcı, M. Y. (2019). Çelik Lif Kanca Geometrisinin Yüksek Dayanımlı Lifli Betonların Statik ve Darbe Yükleri Altında Eğilme Özelliklerine Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), s. 1609-1627.
Kızılkanat, A. B., Kabay, N., Akyüncü, V., & Erdoğan, G. (2014). Bazalt Lifler Ve Bazalt Lifli Betonların Mekanik Özellikleri . Mühendislik ve Fen Bilimleri Dergisi (32), s. 444-442.
Kozak, M. (2013). Çelik Lifli Betonlar ve Kullanım Alanlarının Araştırılması. Süleyman Demirel Üniversitesi Teknik Bilimler Dergisi, 3(5), s. 26-35.
Kurt, G. (2006). Lif içeriği ve su/çimento oranının fibrobetonun mekanik davranışına etkileri (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
Marvila , M. T., de Azevedo , A. G., de Matos, P. R., Monteiro , S. N., & Vieira , C. F. (2021). Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 14(15), s. 1-36. doi:https://doi.org/10.3390/ma14154304
Mukhopadhyay, S., & Khatana, S. (2015). A Review On The Use Of Fibers İn Reinforced Cementitious Concrete. Journal of Industrial Textiles, 45(2), s. 239-264. doi:https://doi.org/10.1177/1528083714529806
Nazar, S., Yang, J., Thomas, B. S., Azim, I., & Rehman, S. K. (2020). Rheological Properties Of Cementitious Composites With And Without Nano-Materials: A Comprehensive Review. Journal of Cleaner Production, 272(122701). doi:https://doi.org/10.1016/j.jclepro.2020.122701
Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. ( 2017). Applications Of Using Nano Material İn Concrete: A Review. Construction and Building Materials, 133, s. 91-97. doi:https://doi.org/10.1016/j.conbuildmat.2016.12.005
Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization And Efficiency Of Ground Granulated Blast Furnace Slag On Concrete Properties – A Review. Construction and Building Materials, 105, s. 423-434. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.153
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid Short Fiber Reinforcement System İn Concrete: A Review. Construction and Building Materials, 142, s. 280-294. doi:https://doi.org/10.1016/j.conbuildmat.2017.03.059
Paul, S. C., Van Rooyen, A. S., Van Zijl, G. P., & Petrik, L. F. (2018). Properties Of Cement-Based Composites Using Nanoparticles: A Comprehensive Review. Construction and Building Materials, 189, s. 1019-1034. doi:https://doi.org/10.1016/j.conbuildmat.2018.09.062
Plank, J., Sakai, E., Miao, C. W., & Hong, J. X. (2015). Chemical Admixtures — Chemistry, Applications And Their İmpact On Concrete Microstructure And Durability. Cement and Concrete Research, 78, s. 81-99. doi:https://doi.org/10.1016/j.cemconres.2015.05.016
Rashad, A. M. (2014). A Comprehensive Overview About The İnfluence Of Different Admixtures And Additives On The Properties Of Alkali-Activated Fly Ash. Materials & Design, 53, s. 1005-1025. doi:https://doi.org/10.1016/j.matdes.2013.07.074
Reches, Y. (2018). Nanoparticles As Concrete Additives: Review And Perspectives. Construction and Building Materials, 175, s. 483-495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214
Sarı, M. (2013). Farklı tipteki liflerin betonun mekanik davranışına etkisi (Yüksek lisans tezi). Erişim adresi: https://polen.itu.edu.tr/
Scherer, G. (2015). Drying, Shrinkage, and Cracking of Cementitious Materials. Transport in Porous Media, 110, s. 311–331. doi:DOI 10.1007/s11242-015-0518-5
Shaikh, F. A., Luhar, S., Arel, H. Ş., & Luhar, I. (2020). Performance Evaluation Of Ultrahigh Performance Fibre Reinforced Concrete – A Review. Construction and Building Materials, 232. doi:https://doi.org/10.1016/j.conbuildmat.2019.117152
Sidiq, A., Gravina, R., & Giustozzi, F. (2019). Is Concrete Healing Really Efficient? A Review. Construction and Building Materials, 205, s. 257-273. doi:https://doi.org/10.1016/j.conbuildmat.2019.02.002
Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial Role Of Nanosilica İn Cement Based Materials – A Review. Construction and Building Materials, 47, s. 1069-1077. doi:https://doi.org/10.1016/j.conbuildmat.2013.05.052
Soufeiani, L., Raman, S. N., Jumaat, M. Z., Alengaram, U. J., Ghadyani, G., & Mendis, P. (2016). Influences Of The Volume Fraction And Shape Of Steel Fibers On Fiber-Reinforced Concrete Subjected To Dynamic Loading – A Review. Engineering Structures, 124, s. 405-417. doi:https://doi.org/10.1016/j.engstruct.2016.06.029
Şahan, M.F., Ünsal, İ. (2021). Farklı Lif Oranına Sahip Çelik Lif Takviyeli Beton Kirişlerde Çarpma Etkisi. International Journal of Innovative Engineering Applications, 5(2), s. 212-217. DOI: 10.46460/ijiea.986369
Şimşek, O., Toklu, K., & Ünal, M. T. (2021). Çelik Liflerin Geometrik Şeklinin ve Oranının Beton Özelleriklerine Etkisinin Araştırılması. Politeknik Dergisi, 24(2), s. 409-415. doi: 10.2339/politeknik.691640
Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. A. ( 2022). Durability And Mechanical Properties Of Cement Concrete Comprising Pozzolanic Materials With Alkali-Activated Binder: A Comprehensive Review. Case Studies in Construction Materials, 17(e01429). doi:https://doi.org/10.1016/j.cscm.2022.e01429
Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass Ashes From Agricultural Wastes As Supplementary Cementitious Materials Or Aggregate Replacement İn Cement/Geopolymer Concrete: A Comprehensive Review. Journal of Building Engineering, 40(102332). doi:https://doi.org/10.1016/j.jobe.2021.102332
Tiberti, G., Germano, F., Mudadu, A., & Plizzari, G. A. (2018). An Overview Of The Flexural Post-Cracking Behavior Of Steel Fiber Reinforced Concrete. Structural Concrete, 19(3), s. 695-718. doi:https://doi.org/10.1002/suco.201700068
Tittelboom, K. V., & De Belie, N. (2013). Self-Healing in Cementitious Materials—A Review . Materials , 6(6), s. 2182-2217. doi:https://doi.org/10.3390/ma6062182
Türk, K., & Kına, C. (2017). Çimento Esaslı Kompozitlerde Karma Lif Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), s. 671-678. doi:doi: 10.5505/pajes.2016.17047
Türkmenoğlu, Z. F., & Varol, O. O. (2016). Lifli Beton Türleri Ve Kullanım Alanları. 1st International Mediterranean Science and Engineering Congress, (s. 3792-3795). Adana.
Wu, H., Lin, X., & Zhou, A. (2020). A Review Of Mechanical Properties Of Fibre Reinforced Concrete At Elevated Temperatures. Cement and Concrete Research, 135. doi:https://doi.org/10.1016/j.cemconres.2020.106117
Yazıcı, Ş. (2017). Çelik Lif Boyu Ve Kullanım Oranının Çelik Lifli Betonun Özelliklerine Etkisi. 5th International Symposium on Innovative Technologies in Engineering and Science. Bakü.
Yoo, D.-Y., & Banthia, N. (2016). Mechanical Properties Of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cement and Concrete Composites, 73, s. 267-280. doi:https://doi.org/10.1016/j.cemconcomp.2016.08.001
Yoo, D.-Y., & Banthia, N. (2019). Impact Resistance Of Fiber-Reinforced Concrete – A Review. Cement and Concrete Composites, 104(103389). doi:https://doi.org/10.1016/j.cemconcomp.2019.103389
Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous Micro-Fibers As İntrinsic Reinforcement For Ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 184(107741). doi:https://doi.org/10.1016/j.compositesb.2020.107741
Zhang, P., Wittmann, F. H., Lura, P., Müller, H. S., Han, S., & Zhao, T. (2018). Application Of Neutron İmaging To İnvestigate Fundamental Aspects Of Durability Of Cement-Based Materials: A Review. Cement and Concrete Research, 108, s. 152-166. doi:https://doi.org/10.1016/j.cemconres.2018.03.003
Toplam 60 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
Türkçe
Konular
Yapı Malzemeleri, Yapı Mühendisliği, Çimento Teknolojisi
Ramazanoğlu, B., & Kaya, N. (2024). Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Journal of the Institute of Science and Technology, 14(1), 422-436. https://doi.org/10.21597/jist.1342361
AMA
Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. Mart 2024;14(1):422-436. doi:10.21597/jist.1342361
Chicago
Ramazanoğlu, Berfin, ve Necim Kaya. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology 14, sy. 1 (Mart 2024): 422-36. https://doi.org/10.21597/jist.1342361.
EndNote
Ramazanoğlu B, Kaya N (01 Mart 2024) Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Journal of the Institute of Science and Technology 14 1 422–436.
IEEE
B. Ramazanoğlu ve N. Kaya, “Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme”, Iğdır Üniv. Fen Bil Enst. Der., c. 14, sy. 1, ss. 422–436, 2024, doi: 10.21597/jist.1342361.
ISNAD
Ramazanoğlu, Berfin - Kaya, Necim. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology 14/1 (Mart 2024), 422-436. https://doi.org/10.21597/jist.1342361.
JAMA
Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:422–436.
MLA
Ramazanoğlu, Berfin ve Necim Kaya. “Çimento Esaslı Kompozitlerde Çatlak Oluşumu Ve Çatlak Kontrolünde Lif Kullanımının Ve Karışım Parametrelerinin Etkisi: Derleme”. Journal of the Institute of Science and Technology, c. 14, sy. 1, 2024, ss. 422-36, doi:10.21597/jist.1342361.
Vancouver
Ramazanoğlu B, Kaya N. Çimento Esaslı Kompozitlerde Çatlak Oluşumu ve Çatlak Kontrolünde Lif Kullanımının ve Karışım Parametrelerinin Etkisi: Derleme. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):422-36.