Araştırma Makalesi
BibTex RIS Kaynak Göster

Fe3O4@SA MNCs Synthesis, Characterization, and First-time Use in Hydrogen Production by NaBH4 Hydrolysis

Yıl 2024, Cilt: 11 Sayı: 1, 205 - 216, 04.02.2024
https://doi.org/10.18596/jotcsa.1354766

Öz

Hydrogen is a clean energy carrier that will reduce dependence on fossil fuels and contribute to reducing the harmful effects on the environment resulting from using fossil fuels. Hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4), one of the chemical hydrides, using a catalyst. In this study, Fe3O4@Salicylic acid magnetic nano-catalyst (Fe3O4@SA MNCs) was synthesized using the co-precipitation technique. The structural, physical, and chemical properties of the produced Fe3O4@SA MNCs were characterized by FT-IR, XRD, VSM, SEM, and SEM-EDX methods. At room temperature, the effect on hydrogen production performance was examined in the amounts of Fe3O4@SA MNCs (10, 25, 50, 75, and 100 mg), NaOH (0, 10, 20, and 25 mg), and NaBH4 (25, 50, 100, 150 and 200 mg). The highest hydrogen generation rates (HGR) were obtained using 10 mg Fe3O4@SA MNCs, 150 mg NaBH4, and 0 mg NaOH at room temperature. The obtained HGR value was calculated as 400 mL gcat-1.min-1. Fe3O4@SA MNCs were used for hydrogen production for the first time in this study. This study showed that Fe3O4@SA MNCs exhibit catalytic properties and are a promising, efficient catalyst in hydrogen production from NaBH4.

Kaynakça

  • 1. Arsad A, Hannan M, Al-Shetwi AQ, Hossain M, Begum R, Ker PJ, et al. Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions. International Journal of Hydrogen Energy. 2023;48(13):4960-83. Available from: <URL>
  • 2. Demirci S, Sunol AK, Sahiner N. Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental. 2020;261:118242. Available from: <URL>
  • 3. Sadiq I, Ali SA, Ahmad T. Graphene-based derivatives heterostructured catalytic systems for sustainable hydrogen energy via overall water splitting. Catalysts. 2023;13(1):109. Available from: <URL> 4. Bekirogullari M. Synthesis of waste eggshell-derived Au/Co/Zn/eggshell nanocomposites for efficient hydrogen production from NaBH4 methanolysis. International Journal of Hydrogen Energy. 2023. Available from: <URL>
  • 5. Sahiner N, Ozay O, Inger E, Aktas N. Superabsorbent hydrogels for cobalt nanoparticle synthesis and hydrogen production from hydrolysis of sodium boron hydride. Applied Catalysis B: Environmental. 2011;102(1-2):201-6. Available from: <URL>
  • 6. Agarwal N, Solanki VS, Pare B, Singh N, Jonnalagadda SB. Current trends in nanocatalysis for green chemistry and its applications-a mini-review. Current Opinion in Green and Sustainable Chemistry. 2023:100788. Available from: <URL>
  • 7. Kutluay S, Ece MŞ, Şahin Ö, Kahraman Z, Ferat Ö, Fesih A. Derik Halhalı Zeytin Çekirdeğinden Çevre Dostu Selülozik Manyetik Nano-Adsorbent Üretimi ve Benzen Gideriminde Kullanılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021;10(4):1535-51. Available from: <URL>
  • 8. Ece MŞ. Fe3O4/AC@ SiO2@ EDTA Manyetik Nano-Adsorbentin Sentezlenmesi ve Toluenin Gaz Adsorpsiyonunda Kullanılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020;9(2):561-72. Available from: <URL> 9. Chen B, Chen S, Bandal HA, Appiah-Ntiamoah R, Jadhav AR, Kim H. Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy. 2018;43(19):9296-306. Available from: <URL> 10. Izgi MS, Ece MŞ, Kazici HÇk, Şahi̇n Ö, Onat E. Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres. International journal of hydrogen energy. 2020;45(55):30415-30. Available from: <URL> 11. Yang M, Xu A, Du H, Sun C, Li C. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process. Journal of hazardous materials. 2007;139(1):86-92. Available from: <URL>
  • 12. Zhang P. Photocatalytic Reduction of Wo-3-Tio-2 Composite Catalyst in Cr (Ⅵ) Ion. International Journal of New Developments in Education. 2020;2(6). Available from: <DOI>
  • 13. Ece MŞ. Synthesis, characterization and investigation of some physical textures of magnetite-silica-L-Proline nanoparticles modified with some transition metals (Co, Mn, Cu, Ni). Materials Science and Engineering: B. 2023;292:116417. Available from: <URL>
  • 14. Kutluay S, Horoz S, Şahin Ö, Ekinci A, Ece MŞ. Highly improved solar cell efficiency of Mn‐doped amine groups‐functionalized magnetic Fe3O4@ SiO2 nanomaterial. International Journal of Energy Research. 2021;45(14):20176-85. Available from: <URL>
  • 15. Wei Y, Wang M, Fu W, Wei L, Zhao X, Zhou X, et al. Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure. Journal of alloys and compounds. 2020;836:155429. Available from: <URL>
  • 16. Balbay A, Saka C. Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. International Journal of Hydrogen Energy. 2018;43(46):21299-306. Available from: <URL>
  • 17. Unal B, Durmus Z, Kavas H, Baykal A, Toprak M. Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Materials Chemistry and Physics. 2010;123(1):184-90. Available from: <URL> 18. Abdolmohammad-Zadeh H, Salimi A. A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd (II) ions. Frontiers of Chemical Science and Engineering. 2021;15:450-9. Available from: <URL>
  • 19. Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Khaniabadi PM, Mehrdel B. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Scientific reports. 2020;10(1):10793. Available from: <URL>
  • 20. Huang Y, Wang K, Cui L, Zhu W, Asiri AM, Sun X. Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catalysis Communications. 2016;87:94-7. Available from: <URL>
  • 21. Yang L, Fan C, Zhang J, Zhang F, Li R, Yi S, et al. Poly (acrylic acid)-modified silica nanoparticles as a nonmetal catalyst for NaBH4 methanolysis. International Journal of Hydrogen Energy. 2021;46(45):23236-44. Available from: <URL>
  • 22. Al-Enizi AM, Nafady A, El-Halwany M, Brooks RM, Abutaleb A, Yousef A. Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2019;44(39):21716-25. Available from: <URL>
  • 23. Ghodke N, Rayaprol S, Bhoraskar S, Mathe V. Catalytic hydrolysis of sodium borohydride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. International Journal of Hydrogen Energy. 2020;45(33):16591-605. Available from: <URL>
  • 24. Deonikar VG, Rathod PV, Pornea AM, Puguan JMC, Park K, Kim H. Hydrogen generation from catalytic hydrolysis of sodium borohydride by a Cu and Mo promoted Co catalyst. Journal of Industrial and Engineering Chemistry. 2020;86:167-77. Available from: <URL>
  • 25. Nabid MR, Bide Y, Kamali B. Hydrogen release from sodium borohydride by Fe2O3@ nitrogen-doped carbon core-shell nanosheets as reasonable heterogeneous catalyst. International Journal of Hydrogen Energy. 2019;44(47):25662-70. Available from: <URL>
  • 26. Ro G, Hwang DK, Kim Y. Hydrogen generation using Pt/Ni bimetallic nanoparticles supported on Fe3O4@ SiO2@ TiO2 multi-shell microspheres. Journal of Industrial and Engineering Chemistry. 2019;79:364-9. Available from: <URL>
  • 27. Ocon JD, Tuan TN, Yi Y, de Leon RL, Lee JK, Lee J. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles. Journal of power sources. 2013;243:444-50. Available from: <URL> 28. Hayagreevan C, Siva B, Rahul R, Denisdon S, Jeevagan J, Adinaveen T, et al. Sulphonated silica and sulphonated silica/carbon particles as efficient catalysts for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. 2021;46(68):33849-63. Available from: <URL> 29. Zhang J, Li Y, Yang L, Zhang F, Li R, Dong H. Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis. Catalysis Letters. 2022;152(5):1386-91. Available from: <URL>
  • 30. Demirci UB, Miele P. Reaction mechanisms of the hydrolysis of sodium borohydride: A discussion focusing on cobalt-based catalysts. Comptes Rendus Chimie. 2014;17(7-8):707-16. Available from: <URL>
Yıl 2024, Cilt: 11 Sayı: 1, 205 - 216, 04.02.2024
https://doi.org/10.18596/jotcsa.1354766

Öz

Kaynakça

  • 1. Arsad A, Hannan M, Al-Shetwi AQ, Hossain M, Begum R, Ker PJ, et al. Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions. International Journal of Hydrogen Energy. 2023;48(13):4960-83. Available from: <URL>
  • 2. Demirci S, Sunol AK, Sahiner N. Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Applied Catalysis B: Environmental. 2020;261:118242. Available from: <URL>
  • 3. Sadiq I, Ali SA, Ahmad T. Graphene-based derivatives heterostructured catalytic systems for sustainable hydrogen energy via overall water splitting. Catalysts. 2023;13(1):109. Available from: <URL> 4. Bekirogullari M. Synthesis of waste eggshell-derived Au/Co/Zn/eggshell nanocomposites for efficient hydrogen production from NaBH4 methanolysis. International Journal of Hydrogen Energy. 2023. Available from: <URL>
  • 5. Sahiner N, Ozay O, Inger E, Aktas N. Superabsorbent hydrogels for cobalt nanoparticle synthesis and hydrogen production from hydrolysis of sodium boron hydride. Applied Catalysis B: Environmental. 2011;102(1-2):201-6. Available from: <URL>
  • 6. Agarwal N, Solanki VS, Pare B, Singh N, Jonnalagadda SB. Current trends in nanocatalysis for green chemistry and its applications-a mini-review. Current Opinion in Green and Sustainable Chemistry. 2023:100788. Available from: <URL>
  • 7. Kutluay S, Ece MŞ, Şahin Ö, Kahraman Z, Ferat Ö, Fesih A. Derik Halhalı Zeytin Çekirdeğinden Çevre Dostu Selülozik Manyetik Nano-Adsorbent Üretimi ve Benzen Gideriminde Kullanılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021;10(4):1535-51. Available from: <URL>
  • 8. Ece MŞ. Fe3O4/AC@ SiO2@ EDTA Manyetik Nano-Adsorbentin Sentezlenmesi ve Toluenin Gaz Adsorpsiyonunda Kullanılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020;9(2):561-72. Available from: <URL> 9. Chen B, Chen S, Bandal HA, Appiah-Ntiamoah R, Jadhav AR, Kim H. Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy. 2018;43(19):9296-306. Available from: <URL> 10. Izgi MS, Ece MŞ, Kazici HÇk, Şahi̇n Ö, Onat E. Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres. International journal of hydrogen energy. 2020;45(55):30415-30. Available from: <URL> 11. Yang M, Xu A, Du H, Sun C, Li C. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process. Journal of hazardous materials. 2007;139(1):86-92. Available from: <URL>
  • 12. Zhang P. Photocatalytic Reduction of Wo-3-Tio-2 Composite Catalyst in Cr (Ⅵ) Ion. International Journal of New Developments in Education. 2020;2(6). Available from: <DOI>
  • 13. Ece MŞ. Synthesis, characterization and investigation of some physical textures of magnetite-silica-L-Proline nanoparticles modified with some transition metals (Co, Mn, Cu, Ni). Materials Science and Engineering: B. 2023;292:116417. Available from: <URL>
  • 14. Kutluay S, Horoz S, Şahin Ö, Ekinci A, Ece MŞ. Highly improved solar cell efficiency of Mn‐doped amine groups‐functionalized magnetic Fe3O4@ SiO2 nanomaterial. International Journal of Energy Research. 2021;45(14):20176-85. Available from: <URL>
  • 15. Wei Y, Wang M, Fu W, Wei L, Zhao X, Zhou X, et al. Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure. Journal of alloys and compounds. 2020;836:155429. Available from: <URL>
  • 16. Balbay A, Saka C. Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. International Journal of Hydrogen Energy. 2018;43(46):21299-306. Available from: <URL>
  • 17. Unal B, Durmus Z, Kavas H, Baykal A, Toprak M. Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Materials Chemistry and Physics. 2010;123(1):184-90. Available from: <URL> 18. Abdolmohammad-Zadeh H, Salimi A. A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd (II) ions. Frontiers of Chemical Science and Engineering. 2021;15:450-9. Available from: <URL>
  • 19. Dheyab MA, Aziz AA, Jameel MS, Noqta OA, Khaniabadi PM, Mehrdel B. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Scientific reports. 2020;10(1):10793. Available from: <URL>
  • 20. Huang Y, Wang K, Cui L, Zhu W, Asiri AM, Sun X. Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catalysis Communications. 2016;87:94-7. Available from: <URL>
  • 21. Yang L, Fan C, Zhang J, Zhang F, Li R, Yi S, et al. Poly (acrylic acid)-modified silica nanoparticles as a nonmetal catalyst for NaBH4 methanolysis. International Journal of Hydrogen Energy. 2021;46(45):23236-44. Available from: <URL>
  • 22. Al-Enizi AM, Nafady A, El-Halwany M, Brooks RM, Abutaleb A, Yousef A. Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2019;44(39):21716-25. Available from: <URL>
  • 23. Ghodke N, Rayaprol S, Bhoraskar S, Mathe V. Catalytic hydrolysis of sodium borohydride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. International Journal of Hydrogen Energy. 2020;45(33):16591-605. Available from: <URL>
  • 24. Deonikar VG, Rathod PV, Pornea AM, Puguan JMC, Park K, Kim H. Hydrogen generation from catalytic hydrolysis of sodium borohydride by a Cu and Mo promoted Co catalyst. Journal of Industrial and Engineering Chemistry. 2020;86:167-77. Available from: <URL>
  • 25. Nabid MR, Bide Y, Kamali B. Hydrogen release from sodium borohydride by Fe2O3@ nitrogen-doped carbon core-shell nanosheets as reasonable heterogeneous catalyst. International Journal of Hydrogen Energy. 2019;44(47):25662-70. Available from: <URL>
  • 26. Ro G, Hwang DK, Kim Y. Hydrogen generation using Pt/Ni bimetallic nanoparticles supported on Fe3O4@ SiO2@ TiO2 multi-shell microspheres. Journal of Industrial and Engineering Chemistry. 2019;79:364-9. Available from: <URL>
  • 27. Ocon JD, Tuan TN, Yi Y, de Leon RL, Lee JK, Lee J. Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles. Journal of power sources. 2013;243:444-50. Available from: <URL> 28. Hayagreevan C, Siva B, Rahul R, Denisdon S, Jeevagan J, Adinaveen T, et al. Sulphonated silica and sulphonated silica/carbon particles as efficient catalysts for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. 2021;46(68):33849-63. Available from: <URL> 29. Zhang J, Li Y, Yang L, Zhang F, Li R, Dong H. Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis. Catalysis Letters. 2022;152(5):1386-91. Available from: <URL>
  • 30. Demirci UB, Miele P. Reaction mechanisms of the hydrolysis of sodium borohydride: A discussion focusing on cobalt-based catalysts. Comptes Rendus Chimie. 2014;17(7-8):707-16. Available from: <URL>
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Adil Umaz 0000-0003-2438-5454

Yayımlanma Tarihi 4 Şubat 2024
Gönderilme Tarihi 4 Eylül 2023
Kabul Tarihi 23 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 1

Kaynak Göster

Vancouver Umaz A. Fe3O4@SA MNCs Synthesis, Characterization, and First-time Use in Hydrogen Production by NaBH4 Hydrolysis. JOTCSA. 2024;11(1):205-16.