Araştırma Makalesi
BibTex RIS Kaynak Göster

Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines

Yıl 2023, Cilt: 12 Sayı: 4, 495 - 504, 31.12.2023
https://doi.org/10.33714/masteb.1321082

Öz

Modern techniques are often applied to analyze the body shape differences among biological organisms. Also, taxonomy and systematics are two essential fields of Biology concerning shape discrimination. This study aims to identify the shape variations of Sardinella lemuru (Bali sardinella) using Symmetry Asymmetry Geometric Data (SAGE) Software Application. A total of 70 fish samples consisting of 35 males and 35 females were collected in Barangay Caasinan, Cabadbaran, Agusan Del Norte, Philippines. Standard laboratory procedures were done and fish samples were subjected to the analysis. Procrustes ANOVA revealed a highly significant difference (P<0.0001) among the components analyzed (individuals, sides, and individuals vs. sides). This implied that each of the fish samples exhibited different body shapes. Principal Component Analysis (PCA) obtained a high rate of Interaction/Fluctuating Asymmetry (76.79%) in males when compared to female samples (74.08%). The shape dissimilarities within the populations were associated with genetic components, ecological adaptations-swimming, predator escape, and resource competition. Thus, the present study identified shape disparity within the fish populations. The development of employing modern techniques enhances scientific methods to quantify shape dissimilarities among species individuals and assemblages.

Etik Beyan

For this type of study, formal consent is not required.

Destekleyen Kurum

Department of Education, Division of Cabadbaran City, Philippines

Teşekkür

The authors would like to extend their gratitude to the Department of Education, Division of Cabadbaran City for funding the study during the sampling and laboratory procedures.

Kaynakça

  • Abzhanov, A. (2017). The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’. Development, 144(23), 4284-4297. https://doi.org/10.1242/dev.137505
  • Angtuaco, S. P., & Leyesa, M. (2004). Fluctuating asymmetry: An early warning indicator of environmental stress. Asian Journal of Biology Education, 2, 35-38. https://doi.org/10.57443/ajbe.2.0_35
  • Arendt, J. D., Wilson, D. S. (1999). Counter gradient selection for rapid growth in pumpkinseed sunfish: disentangling ecological and evolutionary effects. Ecology, 80(8), 2793-2798. https://doi.org/10.2307/177259
  • Bergstrom, C. A., & Reimchen, T. E. (2002). Geographical variation in asymmetry in Gasterosteus aculeatus. Biological Journal of the Linnean Society, 77(1), 9-22. https://doi.org/10.1046/j.1095-8312.2002.00078.x
  • Best, C., Ikert, H., Kostyniuk, D. J., Craig, P. M., Navarro-Martin, L., Marandel, L., & Mennigen, J. A. (2018). Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 224, 210–244. https://doi.org/10.1016/j.cbpb.2018.01.006
  • Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25(11), 653-659. https://doi.org/10.1016/j.tree.2010.08.003
  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.
  • Burggren, W., & Blank, T. (2009). Physiological study of larval fishes: Challenges and opportunities. Scientia Marina, 73 (Suppl. S1), 99–110. https://doi.org/10.3989/scimar.2009.73s1099
  • Cabuga, C. C. Jr., Angco, M. K. A., Codaste, Y. G., Salvaleon, S. M. N., & Pondang, J. M. D. (2022). A geometric morphometric study in the population of Sharpnose Hammer Coacker (Johnius borneensis, Blecker 1851) from Butuan Bay, Caraga, Philippines. Computational Ecology and Software, 12(1), 1-11.
  • Cabuga, C. C. Jr., Delabahan, I. C. B., Dedel, J. I. C., Ayaton, M. A., Ombat, L. A., & Budlayan, M. L. M. (2018). Geometric morphometrics of leaf blade shape in water hyacinth (Eichhornia crassipes: Pontederiaceae) population from Lake Mainit, Philippines. Computational Ecology and Software, 8(2), 46-56.
  • Conover, D. O., Clarke, L. M., Munch, S. B., Wagner, G. N. (2006). Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology, 69, 21-47. https://doi.org/10.1111/j.1095-8649.2006.01274.x
  • Craig, J. K., & Foote, C. J. (2001). Counter gradient variation and secondary sexual color: Phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and non-anadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution, 55(2), 380-391. https://doi.org/10.1111/j.0014-3820.2001.tb01301.x
  • Dabrowski, K. R. (1986). Active metabolism in larval and juvenile fish: Ontogenetic changes, effect of water temperature and fasting. Fish Physiology and Biochemistry, 1, 125–144. https://doi.org/10.1007/BF02290254
  • Dikshith, T. S. S., Raizada, R. B., Kumar, M. K., Shrivastava, S. K., & Kulshrestha, A. U. N. (1990). Residues of DDT and HCH in major sources of drinking water in Bhopal, Indian. Bulletin of Environmental Contamination and Toxicology, 45, 389-393. https://doi.org/10.1007/BF01701162
  • Downie, A. T., Leis, J. M., Cowman, P. F., McCormick, M. I., & Rummer, J. L. (2021). The influence of habitat association on swimming performance in marine teleost fish larvae. Fish and Fisheries, 22(6), 1187-1212. https://doi.org/10.1111/faf.12580
  • Ducos, M. B., & Tabugo, S. R. M. (2015). Fluctuating asymmetry as bioindicator of stress and developmental instability in Gafrarium tumidum (ribbed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines. AACL Bioflux, 8(3), 292-300.
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Echem, R. T. (2016). Geometric morphometric analysis of shape variation of Sardinella lemuru. International Journal of Advanced Research in Biological Sciences, 3(9), 91-97. https://doi.org/10.22192/ijarbs.2016.03.09.013
  • Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B, Biological Sciences, 365, 547–556. https://doi.org/10.1098/rstb.2009.0267
  • Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford University Press. https://doi.org/10.1093/oso/9780198577324.001.0001
  • Holloway, G. J., Povey, S. R., & Sibly, R. M. (1990). The effect of new environment on adapted genetic architecture. Heredity, 64, 323-330. https://doi.org/10.1038/hdy.1990.40
  • James Rohlf, F., & Marcus, L. F. A. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. https://doi.org/10.1016/0169-5347(93)90024-j
  • Jonsson, B., & Jonsson, N. (2019). Phenotypic plasticity and epigenetics of fish: embryo temperature affects later-developing life-history traits. Aquatic Biology, 28, 21-32. https://doi.org/10.3354/ab00707
  • Jumawan, J. H., Requieron, E. A., Torres, M. A. J., Velasco, J. P. B., Cabuga, C. C. Jr., Joseph, C. C. D., Lador, J. E. O., dela Cruz, H. D., Moreno, M. J., Dalugdugan, R. O., & Jumawan, J. C. (2016). Investigating the fluctuating asymmetry in the metric characteristics of tilapia Oreochromis niloticus sampled from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. AACL Bioflux, 9(1), 113-121.
  • Kakioka, R., Kokita, T., Kumada, H., Watanabe, K., & Okuda, N. (2013). A RAD-based linkage map and comparative genomics in the gudgeons (Genus Gnathopogon, Cyprinidae). BMC Genomics, 14, 32. https://doi.org/10.1186/1471-2164-14-32
  • Karr, J. R., & James, F. C. (1975). Ecomorphological configurations and convergent evolution in species and communities. Belknap Press.
  • Kerschbaumer, M., & Sturmbauer, C. (2011). The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal Evolutionary Biology, 2011, 290245. https://doi.org/10.4061/2011/290245
  • Khemis, I. B., Gisbert, E., Alcaraz, C., Zouiten, D., Besbes, R., Zouiten, A., Masmoudi, A. S., & Cahu, C. (2013). Allometric growth patterns and development in larvae and juveniles of thick-lipped grey mullet Chelon labrosus reared in mesocosm conditions. Aquaculture Research, 44(12), 1872–1888. https://doi.org/10.1111/j.1365-2109.2012.03192.x
  • Killen, S. S., Glazier, D. S., Rezende, E. L., Clark, T. D., Atkinson, D., Willener, A. S. T., & Halsey, L. G. (2016). Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. American Naturalist, 187(5), 592–606. https://doi.org/10.1086/685893
  • Kishida, O., Trussell, G. C., Mougi, A., & Nishimura, K. (2010). Evolutionary ecology of inducible morphological plasticity in predator–prey interaction: toward the practical links with population ecology. Population Ecology, 52(1), 37-46. https://doi.org/10.1007/s10144-009-0182-0
  • Klingenberg, C. P. (2019). Phenotypic plasticity, developmental instability, and robustness: The concepts and how they are connected. Frontier Ecology Evolution, 7, 56. https://doi.org/10.3389/fevo.2019.00056
  • Koumoundouros, G., Ashton, C., Xenikoudakis, G., Giopanou, I., Georgakopoulou, E., & Stickland, N. (2009). Ontogenetic differentiation of swimming performance in gilthead seabream (Sparus aurata, Linnaeus 1758) during metamorphosis. Journal of Experimental Marine Biology and Ecology, 370(1-2), 75–81. https://doi.org/10.1016/j.jembe.2008.12.001
  • Kourkouta, C., Printzi, A., Geladakis, G., Mitrizakis, N., Papandroulakis, N., & Koumoundouros, G. (2021). Long lasting effects of early temperature exposure on the swimming performance and skeleton development of metamorphosing gilthead seabream (Sparus aurata L.). larvae. Scientific Reports, 11, 8787. https://doi.org/10.1038/s41598-021-88306-4
  • Latorre, D., García-Berthou, E., Rubio-Gracia, F., Galobart, C., Almeida, D., & Vila-Gispert, A. (2020). Captive breeding conditions decrease metabolic rates and alter morphological traits in the endangered Spanish toothcarp, Aphanius iberus. International Review of Hydrobiology, 105(5-6), 119–130. https://doi.org/10.1002/iroh.201902014
  • Laugen, A. T., Engelhard, G. H., Whitlock, R., Arlinghaus, R., Dankel, D. J, Dunlop, E. S., & Dieckmann, U. (2014). Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish and Fisheries, 15(1), 65-96. https://doi.org/10.1111/faf.12007
  • Lecera, J. M. I., Pundung, N. A. C., Banisil, M. A., Flamiano, R. S., Torres, M. A. J., Belonio, C. L., Requieron, E. A. (2015). Fluctuating asymmetry analysis of trimac Amphilophus trimaculatus as indicator of the current ecological health condition of Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(4), 507-516.
  • Luceño, A. J. M., Torres, M.A. J., Tabugo, S. R. M., & Demayo, C. G. (2014). Describing the body shapes of three populations of Sardinella lemuru (Bleeker, 1853) from Mindanao Island, Philippines using relative warp analysis. International Research Journal of Biological Sciences, 3(6), 6-17.
  • Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. https://doi.org/10.1016/j.tree.2003.10.002
  • Marquez, E. (2007). SAGE: Symmetry and asymmetry in geometric data version 1.05 (complied 09/17/08). Available online at http://www.personal.umich.edu/~emarquez/morph/
  • Martinez-Leiva, L., Landeira, J. M., Fatira, E., Díaz-Pérez J., Hernández-León, S., Roo, J., & Tuset, V. M. (2023). Energetic implications of morphological changes between fish larval and juvenile stages using geometric morphometrics of body shape. Animals, 13(3), 370. https://doi.org/10.3390/ani13030370
  • Natividad, E. M. C., Dalundong, A. R. O., Ecot, J., Jumawan, J. H., Torres, M. A. J., & Requieron, E. A. (2015). Fluctuating asymmetry in the body shapes of gobies Glossogobius celebius (Valenciennes, 1837) from Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(3), 323-331.
  • Neige, P. (2003). Spatial patterns of disparity and diversity of the recent cuttlefishes (Cephalopoda) across the old world. Journal Biogeography, 30(8), 1125–1137.
  • Nemova, N. N., Lysenko, L. A., & Kantserova, N. P. (2016). Degradation of skeletal muscle protein during growth and development of salmonid fish. Ontogenez, 47(4), 197-208.
  • Osse, J. W. M., van den Boogaart, J. G. M., van Snik, G. M. J., van der Sluys, L. (1997). Priorities during early growth of fish larvae. Aquaculture, 155, 249–258. https://doi.org/10.1016/S0044-8486(97)00126-9
  • Paña, B. H., Lasutan, L. G., Sabid J, Torres M. A., Requieron, E. (2015). Using geometric morphometrics to study the population structure of the silver perch, Leiopotherapon plumbeus from Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(3), 352-361.
  • Parsons, P. A. (1987). Evolutionary rates under environmental stress. In M. K. Hecht, B. Wallace & G. T. Prance (Eds.), Evolutionary biology (pp. 311-347). Springer. https://doi.org/10.1007/978-1-4615-6986-2_10
  • Parsons, P. A. (1990). Fluctuating asymmetry: An epigenetic measure of stress. Biological Reviews, 65(2), 131-145. https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
  • Petterson, L. B., & Brönmark, C. (1999). Energetic consequences of an inducible morphological defence in crucian carp. Oecologia, 121(1), 12–18. https://doi.org/10.1007/s004420050901
  • Pigliucci, M., Murren, C. J., Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209, 2362–2367. https://doi.org/10.1242/jeb.02070
  • Polly, P. D. (2012). Geometric morphometrics for Mathematica. Version 9.0. Department of Geological Sciences, Indiana University: Bloomington, Indiana.
  • Price, S. A., Holzman, R., Near, T. J., Wainwright, P. C. (2011). Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecology Letters, 14(5), 462-469. https://doi.org/10.1111/j.1461-0248.2011.01607.x
  • Requiron, E. A., Torres, M. A. J., & Demayo, C. G. (2012). Applications of relative warp analysis in describing of scale morphology between sexes of the snakehead fish Channa striata. International Journal of Biological, Ecological and Environmental Sciences, 1(6), 205-209, 65:131–145.
  • Richtsmeier, J. T., Deleon, V. B., & Lele, S. R. (2002). The promise of geometric morphometrics. American Journal of Physical Anthropology, 119(Suppl 35), 45, 63–91. https://doi.org/10.1002/ajpa.10174
  • Rohlf, F. J. (2004). TpsDig Version 2.0. Department of Ecology and Evolution, State University of New York.
  • Salvanes, A. G. V., Christiansen, H., Taha, Y., Henseler, C., Seivåg, M. L., Kjesbu, O. S., Gibbons, M. J. (2018). Variation in growth, morphology and reproduction of the bearded goby (Sufflogobius bibarbatus) in varying oxygen environments of northern Benguela. Journal of Marine Systems, 188, 81-97. https://doi.org/10.1016/j.jmarsys.2018.04.003
  • Sánchez-González, J. R., & Nicieza, A. G. (2022). Declining metabolic scaling parallels an ontogenetic change from elongate to deep-bodied shapes in juvenile brown trout. Current Zoology, 69(3), 294-303. https://doi.org/10.1093/cz/zoac042
  • Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369–404. https://doi.org/10.1146/annurev.es.02.110171.002101
  • Somarakis, S., & Nikolioudakis, N. (2010). What makes a late anchovy larva? The development of the caudal fin seen as a milestone in fish ontogeny. Journal of Plankton Research, 32(3), 317–326. https://doi.org/10.1093/plankt/fbp132
  • Swaddle, J. P. (2003). Fluctuating asymmetry, animal behavior and evolution. In P. J. B. Slater, J. S. Rosenblatt, C. T. Snowdon, & T. J. Roper (Eds.), Advances in the study of behavior. Vol. 32 (pp. 169-205). Academic Press. https://doi.org/10.1016/S0065-3454(03)01004-0
  • Tomkins, J. L., & Kotiaho, J. S. (2001). Fluctuating Asymmetry. Encyclopedia of Life and Sciences, https://doi.org/10.1038/npg.els.0003741
  • Trono, D. J. V., Dacar, R., Quinones, L., & Tabugo, S. R. M. (2015). Fluctuating asymmetry and developmental instability in Protoreaster nodosus (Chocolate Chip Sea Star) as a biomarker for environmental stress. Computational Ecology and Software, 5(2), 119-129.
  • Wainwright, P. C., Bellwood, D. R., & Westneat, M. W. (2002). Ecomorphology of locomotion in labrid fishes. Environmental Biology Fishes, 65, 47–62. https://doi.org/10.1023/A:1019671131001
  • Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24(1), 107–120. https://doi.org/10.1093/icb/24.1.107
  • Winemiller, K. O. (1991). Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, 61(4), 343–365. https://doi.org/10.2307/2937046
Yıl 2023, Cilt: 12 Sayı: 4, 495 - 504, 31.12.2023
https://doi.org/10.33714/masteb.1321082

Öz

Kaynakça

  • Abzhanov, A. (2017). The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’. Development, 144(23), 4284-4297. https://doi.org/10.1242/dev.137505
  • Angtuaco, S. P., & Leyesa, M. (2004). Fluctuating asymmetry: An early warning indicator of environmental stress. Asian Journal of Biology Education, 2, 35-38. https://doi.org/10.57443/ajbe.2.0_35
  • Arendt, J. D., Wilson, D. S. (1999). Counter gradient selection for rapid growth in pumpkinseed sunfish: disentangling ecological and evolutionary effects. Ecology, 80(8), 2793-2798. https://doi.org/10.2307/177259
  • Bergstrom, C. A., & Reimchen, T. E. (2002). Geographical variation in asymmetry in Gasterosteus aculeatus. Biological Journal of the Linnean Society, 77(1), 9-22. https://doi.org/10.1046/j.1095-8312.2002.00078.x
  • Best, C., Ikert, H., Kostyniuk, D. J., Craig, P. M., Navarro-Martin, L., Marandel, L., & Mennigen, J. A. (2018). Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 224, 210–244. https://doi.org/10.1016/j.cbpb.2018.01.006
  • Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25(11), 653-659. https://doi.org/10.1016/j.tree.2010.08.003
  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.
  • Burggren, W., & Blank, T. (2009). Physiological study of larval fishes: Challenges and opportunities. Scientia Marina, 73 (Suppl. S1), 99–110. https://doi.org/10.3989/scimar.2009.73s1099
  • Cabuga, C. C. Jr., Angco, M. K. A., Codaste, Y. G., Salvaleon, S. M. N., & Pondang, J. M. D. (2022). A geometric morphometric study in the population of Sharpnose Hammer Coacker (Johnius borneensis, Blecker 1851) from Butuan Bay, Caraga, Philippines. Computational Ecology and Software, 12(1), 1-11.
  • Cabuga, C. C. Jr., Delabahan, I. C. B., Dedel, J. I. C., Ayaton, M. A., Ombat, L. A., & Budlayan, M. L. M. (2018). Geometric morphometrics of leaf blade shape in water hyacinth (Eichhornia crassipes: Pontederiaceae) population from Lake Mainit, Philippines. Computational Ecology and Software, 8(2), 46-56.
  • Conover, D. O., Clarke, L. M., Munch, S. B., Wagner, G. N. (2006). Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology, 69, 21-47. https://doi.org/10.1111/j.1095-8649.2006.01274.x
  • Craig, J. K., & Foote, C. J. (2001). Counter gradient variation and secondary sexual color: Phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and non-anadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution, 55(2), 380-391. https://doi.org/10.1111/j.0014-3820.2001.tb01301.x
  • Dabrowski, K. R. (1986). Active metabolism in larval and juvenile fish: Ontogenetic changes, effect of water temperature and fasting. Fish Physiology and Biochemistry, 1, 125–144. https://doi.org/10.1007/BF02290254
  • Dikshith, T. S. S., Raizada, R. B., Kumar, M. K., Shrivastava, S. K., & Kulshrestha, A. U. N. (1990). Residues of DDT and HCH in major sources of drinking water in Bhopal, Indian. Bulletin of Environmental Contamination and Toxicology, 45, 389-393. https://doi.org/10.1007/BF01701162
  • Downie, A. T., Leis, J. M., Cowman, P. F., McCormick, M. I., & Rummer, J. L. (2021). The influence of habitat association on swimming performance in marine teleost fish larvae. Fish and Fisheries, 22(6), 1187-1212. https://doi.org/10.1111/faf.12580
  • Ducos, M. B., & Tabugo, S. R. M. (2015). Fluctuating asymmetry as bioindicator of stress and developmental instability in Gafrarium tumidum (ribbed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines. AACL Bioflux, 8(3), 292-300.
  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  • Echem, R. T. (2016). Geometric morphometric analysis of shape variation of Sardinella lemuru. International Journal of Advanced Research in Biological Sciences, 3(9), 91-97. https://doi.org/10.22192/ijarbs.2016.03.09.013
  • Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B, Biological Sciences, 365, 547–556. https://doi.org/10.1098/rstb.2009.0267
  • Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford University Press. https://doi.org/10.1093/oso/9780198577324.001.0001
  • Holloway, G. J., Povey, S. R., & Sibly, R. M. (1990). The effect of new environment on adapted genetic architecture. Heredity, 64, 323-330. https://doi.org/10.1038/hdy.1990.40
  • James Rohlf, F., & Marcus, L. F. A. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. https://doi.org/10.1016/0169-5347(93)90024-j
  • Jonsson, B., & Jonsson, N. (2019). Phenotypic plasticity and epigenetics of fish: embryo temperature affects later-developing life-history traits. Aquatic Biology, 28, 21-32. https://doi.org/10.3354/ab00707
  • Jumawan, J. H., Requieron, E. A., Torres, M. A. J., Velasco, J. P. B., Cabuga, C. C. Jr., Joseph, C. C. D., Lador, J. E. O., dela Cruz, H. D., Moreno, M. J., Dalugdugan, R. O., & Jumawan, J. C. (2016). Investigating the fluctuating asymmetry in the metric characteristics of tilapia Oreochromis niloticus sampled from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. AACL Bioflux, 9(1), 113-121.
  • Kakioka, R., Kokita, T., Kumada, H., Watanabe, K., & Okuda, N. (2013). A RAD-based linkage map and comparative genomics in the gudgeons (Genus Gnathopogon, Cyprinidae). BMC Genomics, 14, 32. https://doi.org/10.1186/1471-2164-14-32
  • Karr, J. R., & James, F. C. (1975). Ecomorphological configurations and convergent evolution in species and communities. Belknap Press.
  • Kerschbaumer, M., & Sturmbauer, C. (2011). The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal Evolutionary Biology, 2011, 290245. https://doi.org/10.4061/2011/290245
  • Khemis, I. B., Gisbert, E., Alcaraz, C., Zouiten, D., Besbes, R., Zouiten, A., Masmoudi, A. S., & Cahu, C. (2013). Allometric growth patterns and development in larvae and juveniles of thick-lipped grey mullet Chelon labrosus reared in mesocosm conditions. Aquaculture Research, 44(12), 1872–1888. https://doi.org/10.1111/j.1365-2109.2012.03192.x
  • Killen, S. S., Glazier, D. S., Rezende, E. L., Clark, T. D., Atkinson, D., Willener, A. S. T., & Halsey, L. G. (2016). Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. American Naturalist, 187(5), 592–606. https://doi.org/10.1086/685893
  • Kishida, O., Trussell, G. C., Mougi, A., & Nishimura, K. (2010). Evolutionary ecology of inducible morphological plasticity in predator–prey interaction: toward the practical links with population ecology. Population Ecology, 52(1), 37-46. https://doi.org/10.1007/s10144-009-0182-0
  • Klingenberg, C. P. (2019). Phenotypic plasticity, developmental instability, and robustness: The concepts and how they are connected. Frontier Ecology Evolution, 7, 56. https://doi.org/10.3389/fevo.2019.00056
  • Koumoundouros, G., Ashton, C., Xenikoudakis, G., Giopanou, I., Georgakopoulou, E., & Stickland, N. (2009). Ontogenetic differentiation of swimming performance in gilthead seabream (Sparus aurata, Linnaeus 1758) during metamorphosis. Journal of Experimental Marine Biology and Ecology, 370(1-2), 75–81. https://doi.org/10.1016/j.jembe.2008.12.001
  • Kourkouta, C., Printzi, A., Geladakis, G., Mitrizakis, N., Papandroulakis, N., & Koumoundouros, G. (2021). Long lasting effects of early temperature exposure on the swimming performance and skeleton development of metamorphosing gilthead seabream (Sparus aurata L.). larvae. Scientific Reports, 11, 8787. https://doi.org/10.1038/s41598-021-88306-4
  • Latorre, D., García-Berthou, E., Rubio-Gracia, F., Galobart, C., Almeida, D., & Vila-Gispert, A. (2020). Captive breeding conditions decrease metabolic rates and alter morphological traits in the endangered Spanish toothcarp, Aphanius iberus. International Review of Hydrobiology, 105(5-6), 119–130. https://doi.org/10.1002/iroh.201902014
  • Laugen, A. T., Engelhard, G. H., Whitlock, R., Arlinghaus, R., Dankel, D. J, Dunlop, E. S., & Dieckmann, U. (2014). Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish and Fisheries, 15(1), 65-96. https://doi.org/10.1111/faf.12007
  • Lecera, J. M. I., Pundung, N. A. C., Banisil, M. A., Flamiano, R. S., Torres, M. A. J., Belonio, C. L., Requieron, E. A. (2015). Fluctuating asymmetry analysis of trimac Amphilophus trimaculatus as indicator of the current ecological health condition of Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(4), 507-516.
  • Luceño, A. J. M., Torres, M.A. J., Tabugo, S. R. M., & Demayo, C. G. (2014). Describing the body shapes of three populations of Sardinella lemuru (Bleeker, 1853) from Mindanao Island, Philippines using relative warp analysis. International Research Journal of Biological Sciences, 3(6), 6-17.
  • Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. https://doi.org/10.1016/j.tree.2003.10.002
  • Marquez, E. (2007). SAGE: Symmetry and asymmetry in geometric data version 1.05 (complied 09/17/08). Available online at http://www.personal.umich.edu/~emarquez/morph/
  • Martinez-Leiva, L., Landeira, J. M., Fatira, E., Díaz-Pérez J., Hernández-León, S., Roo, J., & Tuset, V. M. (2023). Energetic implications of morphological changes between fish larval and juvenile stages using geometric morphometrics of body shape. Animals, 13(3), 370. https://doi.org/10.3390/ani13030370
  • Natividad, E. M. C., Dalundong, A. R. O., Ecot, J., Jumawan, J. H., Torres, M. A. J., & Requieron, E. A. (2015). Fluctuating asymmetry in the body shapes of gobies Glossogobius celebius (Valenciennes, 1837) from Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(3), 323-331.
  • Neige, P. (2003). Spatial patterns of disparity and diversity of the recent cuttlefishes (Cephalopoda) across the old world. Journal Biogeography, 30(8), 1125–1137.
  • Nemova, N. N., Lysenko, L. A., & Kantserova, N. P. (2016). Degradation of skeletal muscle protein during growth and development of salmonid fish. Ontogenez, 47(4), 197-208.
  • Osse, J. W. M., van den Boogaart, J. G. M., van Snik, G. M. J., van der Sluys, L. (1997). Priorities during early growth of fish larvae. Aquaculture, 155, 249–258. https://doi.org/10.1016/S0044-8486(97)00126-9
  • Paña, B. H., Lasutan, L. G., Sabid J, Torres M. A., Requieron, E. (2015). Using geometric morphometrics to study the population structure of the silver perch, Leiopotherapon plumbeus from Lake Sebu, South Cotabato, Philippines. AACL Bioflux, 8(3), 352-361.
  • Parsons, P. A. (1987). Evolutionary rates under environmental stress. In M. K. Hecht, B. Wallace & G. T. Prance (Eds.), Evolutionary biology (pp. 311-347). Springer. https://doi.org/10.1007/978-1-4615-6986-2_10
  • Parsons, P. A. (1990). Fluctuating asymmetry: An epigenetic measure of stress. Biological Reviews, 65(2), 131-145. https://doi.org/10.1111/j.1469-185x.1990.tb01186.x
  • Petterson, L. B., & Brönmark, C. (1999). Energetic consequences of an inducible morphological defence in crucian carp. Oecologia, 121(1), 12–18. https://doi.org/10.1007/s004420050901
  • Pigliucci, M., Murren, C. J., Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209, 2362–2367. https://doi.org/10.1242/jeb.02070
  • Polly, P. D. (2012). Geometric morphometrics for Mathematica. Version 9.0. Department of Geological Sciences, Indiana University: Bloomington, Indiana.
  • Price, S. A., Holzman, R., Near, T. J., Wainwright, P. C. (2011). Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecology Letters, 14(5), 462-469. https://doi.org/10.1111/j.1461-0248.2011.01607.x
  • Requiron, E. A., Torres, M. A. J., & Demayo, C. G. (2012). Applications of relative warp analysis in describing of scale morphology between sexes of the snakehead fish Channa striata. International Journal of Biological, Ecological and Environmental Sciences, 1(6), 205-209, 65:131–145.
  • Richtsmeier, J. T., Deleon, V. B., & Lele, S. R. (2002). The promise of geometric morphometrics. American Journal of Physical Anthropology, 119(Suppl 35), 45, 63–91. https://doi.org/10.1002/ajpa.10174
  • Rohlf, F. J. (2004). TpsDig Version 2.0. Department of Ecology and Evolution, State University of New York.
  • Salvanes, A. G. V., Christiansen, H., Taha, Y., Henseler, C., Seivåg, M. L., Kjesbu, O. S., Gibbons, M. J. (2018). Variation in growth, morphology and reproduction of the bearded goby (Sufflogobius bibarbatus) in varying oxygen environments of northern Benguela. Journal of Marine Systems, 188, 81-97. https://doi.org/10.1016/j.jmarsys.2018.04.003
  • Sánchez-González, J. R., & Nicieza, A. G. (2022). Declining metabolic scaling parallels an ontogenetic change from elongate to deep-bodied shapes in juvenile brown trout. Current Zoology, 69(3), 294-303. https://doi.org/10.1093/cz/zoac042
  • Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369–404. https://doi.org/10.1146/annurev.es.02.110171.002101
  • Somarakis, S., & Nikolioudakis, N. (2010). What makes a late anchovy larva? The development of the caudal fin seen as a milestone in fish ontogeny. Journal of Plankton Research, 32(3), 317–326. https://doi.org/10.1093/plankt/fbp132
  • Swaddle, J. P. (2003). Fluctuating asymmetry, animal behavior and evolution. In P. J. B. Slater, J. S. Rosenblatt, C. T. Snowdon, & T. J. Roper (Eds.), Advances in the study of behavior. Vol. 32 (pp. 169-205). Academic Press. https://doi.org/10.1016/S0065-3454(03)01004-0
  • Tomkins, J. L., & Kotiaho, J. S. (2001). Fluctuating Asymmetry. Encyclopedia of Life and Sciences, https://doi.org/10.1038/npg.els.0003741
  • Trono, D. J. V., Dacar, R., Quinones, L., & Tabugo, S. R. M. (2015). Fluctuating asymmetry and developmental instability in Protoreaster nodosus (Chocolate Chip Sea Star) as a biomarker for environmental stress. Computational Ecology and Software, 5(2), 119-129.
  • Wainwright, P. C., Bellwood, D. R., & Westneat, M. W. (2002). Ecomorphology of locomotion in labrid fishes. Environmental Biology Fishes, 65, 47–62. https://doi.org/10.1023/A:1019671131001
  • Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24(1), 107–120. https://doi.org/10.1093/icb/24.1.107
  • Winemiller, K. O. (1991). Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, 61(4), 343–365. https://doi.org/10.2307/2937046
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz ve Nehir Ağzı Ekolojisi
Bölüm Makaleler
Yazarlar

Cresencio Cabuga Jr 0000-0002-9252-6274

Jojean Marie Pondang 0009-0009-5956-5528

Roy Pıloton 0009-0006-1318-6897

Aibie Jel Cornıtes 0009-0003-8960-9858

Penelope Ejada 0009-0004-6978-615X

Mafi Kamille Angco 0000-0001-6309-4938

Owen Lloyd P. Obenza Bu kişi benim 0009-0009-1214-3846

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 30 Haziran 2023
Kabul Tarihi 7 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 4

Kaynak Göster

APA Cabuga Jr, C., Pondang, J. M., Pıloton, R., Cornıtes, A. J., vd. (2023). Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines. Marine Science and Technology Bulletin, 12(4), 495-504. https://doi.org/10.33714/masteb.1321082
AMA Cabuga Jr C, Pondang JM, Pıloton R, Cornıtes AJ, Ejada P, Angco MK, Obenza OLP. Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines. Mar. Sci. Tech. Bull. Aralık 2023;12(4):495-504. doi:10.33714/masteb.1321082
Chicago Cabuga Jr, Cresencio, Jojean Marie Pondang, Roy Pıloton, Aibie Jel Cornıtes, Penelope Ejada, Mafi Kamille Angco, ve Owen Lloyd P. Obenza. “Intraspecific Shape Analysis of Bali Sardinella (Sardinella Lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines”. Marine Science and Technology Bulletin 12, sy. 4 (Aralık 2023): 495-504. https://doi.org/10.33714/masteb.1321082.
EndNote Cabuga Jr C, Pondang JM, Pıloton R, Cornıtes AJ, Ejada P, Angco MK, Obenza OLP (01 Aralık 2023) Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines. Marine Science and Technology Bulletin 12 4 495–504.
IEEE C. Cabuga Jr, “Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines”, Mar. Sci. Tech. Bull., c. 12, sy. 4, ss. 495–504, 2023, doi: 10.33714/masteb.1321082.
ISNAD Cabuga Jr, Cresencio vd. “Intraspecific Shape Analysis of Bali Sardinella (Sardinella Lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines”. Marine Science and Technology Bulletin 12/4 (Aralık 2023), 495-504. https://doi.org/10.33714/masteb.1321082.
JAMA Cabuga Jr C, Pondang JM, Pıloton R, Cornıtes AJ, Ejada P, Angco MK, Obenza OLP. Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines. Mar. Sci. Tech. Bull. 2023;12:495–504.
MLA Cabuga Jr, Cresencio vd. “Intraspecific Shape Analysis of Bali Sardinella (Sardinella Lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines”. Marine Science and Technology Bulletin, c. 12, sy. 4, 2023, ss. 495-04, doi:10.33714/masteb.1321082.
Vancouver Cabuga Jr C, Pondang JM, Pıloton R, Cornıtes AJ, Ejada P, Angco MK, Obenza OLP. Intraspecific Shape Analysis of Bali Sardinella (Sardinella lemuru) Using Geometric Morphometrics Collected in the Coast of Cabadbaran, Agusan Del Norte, Philippines. Mar. Sci. Tech. Bull. 2023;12(4):495-504.

27116