Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft

Yıl 2024, Cilt: 13 Sayı: 2, 419 - 428, 15.04.2024
https://doi.org/10.28948/ngumuh.1396487

Öz

Continuous research and development have focused on optimizing wing aerodynamics and reducing fuel consumption in air vehicles since their inception. Winglets, fixed curved structures at wingtips, gained significant attention during the oil crisis for their fuel-saving potential in the aviation industry. This study focuses on designing a morphing winglet using a shape memory alloy (SMA) for improved aerodynamic efficiency and fuel economy under various conditions. The XFLR5 software analyzes the wing's lift and drag ratios at different aircraft stages (take-off, cruise, landing) for different cant angles. Results indicate that a moving winglet enhances the lift/drag ratio and reduces induced drag. Cant angle and angle of attack (AOA) variations play key roles in increasing this ratio. Optimal values for different aircraft stages are determined and discussed alongside existing mechanisms for moving winglets. Experimental data validation from previous studies in the literature concludes the research.

Kaynakça

  • E. Torenbeek, Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons, 2013.
  • J. E. Guerrero, D. Maestro and A. Bottaro, Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340, 1–2, 67–80, Jan. 2012. https://doi.org/10.1016/J.CRME.2011.11.007.
  • I. Kroo, Nonplanar wing concepts for increased aircraft efficiency. VKI lecture series on innovative configurations and advanced concepts for future civil aircraft, Stanford University, USA, 2005.
  • I. Kroo, Drag Due to Lift: Concepts for prediction and reduction, Annual Review of Fluid Mechanics. Palo Alto, 33, 1, 587–617, 2001. https://doi.org/10.1146/annurev.fluid.33.1.587.
  • Air Force Studies Board, and National Research Council, Assessment of wingtip modifications to increase the fuel efficiency of air force aircraft. National Academies Press, Washington, DC, 2007.
  • R. Faye, R Laprete and M. Winter, Blended Winglets for Improved Airplane Performance, Aero, Boeing, (17), January 2002.
  • B. S. de Mattos, A. P. Macedo and D. H. da Silva Filho, Considerations about winglet design. 21st AIAA Applied Aerodynamics Conference, 2003. https://doi.org/10.2514/6.2003-3502.
  • R. T. Whitcomb, A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Langley Research Center Hampton, Washington, NASA Technical Note TN D-8260, July 1976.
  • J. E. Guerrero, M. Sanguineti and K. Wittkowski, Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, 55, 10, 1917–1947, 2020. https://doi.org/ 10.1007/S11012-020-01230-1.
  • D. Hartl, B. Volk, D. C. Lagoudas, F. Calkins and J. Mabe, Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons. American Society of Mechanical Engineers, Aerospace Division (Publication) AD, 281–290, 2007. https://doi.org/10.1115/IMECE2006-15029.
  • J. Chambers, Concept to reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s, 2003.
  • NASA, NASA Contribution: Winglets, 2015. http://www.nasa.gov/aero/nasa-contribution-winglets.html, Accessed: 15 November 2022.
  • E. Acar, Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys, Thesis, University of Kentucky, UK, 2014.
  • K. Otsuka and T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull, 27, 2, 91–100, 2002. https://doi.org/10.1557/MRS2002.43.
  • K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-based Shape Memory Alloys. Prog Mater Sci, 50, 5, 511–678, 2005. https://doi.org/10.1016/j.pmatsci.2004.10.001.
  • T.R. Meling, The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires. The Angle Orthodontist, 68(4), 357-368, 1998. https://doi.org/10.1043/0003-3219(1998)068<0357:TEOTOT>2.3.CO;2.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 8th Edition, Chapter 1 Introduction And Basic Concepts, 2015.
  • D. Reynaerts and H. Van Brussel, Design aspects of shape memory actuators. Mechatronics, 8, 6, 635–656, 1998. https://doi.org/10.1016/S0957-4158(98)00023-3.
  • J. B. Allen, Articulating winglets, U.S. Patent, US5988563A, 23 November 1999.
  • J. R. Veile, Wing fold push-pin locking assembly, U.S. Patent, US9469392B2, 19 April 1994.
  • R. M. Bray, Winglet, U.S. Patent, US7988099B2, 02 August 2011.
  • Boeing Commercial, Video: Boeing 777x folding wingtip. https://www.boeing.com/777x/reveal/video-777x-FoldingWingtip/, Accessed December 2022
  • B. Barriety, Wing load alleviation apparatus and method, U.S. Patent, US6827314B2, 07 December 2004.
  • P. Bourdin, A. Gatto and M. I. Friswell, Aircraft Control via Variable Cant-Angle Winglets, 45, 2, 414–423, 2012. https://doi.org/10.2514/1.27720.
  • P. Panagiotou, M. Efthymiadis, D. Mitridis and K. Yakinthos, “A CFD-aided investigation of the morphing winglet concept for the performance optimization of fixed-wing MALE UAVS,” Aerospace Research Central, 42, 2018. https://doi.org/10.2514/6.2018-4220.
  • P. Dees and M. Sankrithi, Wing load alleviation apparatus and method, U.S. Patent, US20070114327A1, 24 May 2007.
  • A. M. Pankonien, Smart Material Wing Morphing for Unmanned Aerial Vehicles. Thesis, Unıversıty Of Mıchıgan Library, USA, 2015.
  • P. Marks, ‘Morphing’ winglets to boost aircraft efficiency, New Scientist, 201, 2692, 22–23, 21 January 2009. https://doi.org/10.1016/S0262-4079(09)60208-6.
  • NASA, NASA Tests New Alloy to Fold Wings in Flight. https://www.nasa.gov/aeronautics/nasa-tests-new-alloy-to-fold-wings-in-flight/, Accessed: 25 December 2022.
  • A.P. Mouritz, Titanium alloys for aerospace structures and engines, Introduction to Aerospace Materials, Woodhead Publishing Limited, Sawston, U.K., pp. 202–223, 2012. https://doi.org/10.1533/9780857095152.202.
  • M. Kumar, S. Bal and B. Girish, Proceedings of First Joint International Conference on Advances in Mechanical and Aerospace Engineering, pp. 239, Alliance University, Bengaluru, India, December 2023.
  • E. S. Rutowski, Energy Approach to the General Aircraft Performance Problem, Aerospace Research Central, 21, 3, 187–195, 2012. https://doi.org/10.2514/8.2956.
  • Boeing, 737 Airplane Characterisitics for Airport Planing. https://www.slideshare.net/RenzoJoseJuradoRolon/737-66864457/, Accessed: 06 March 2024.
  • A. Thomas, W. Saric, A. Braslow and D. Bushnell, Aircraft Drag Prediction and Reduction. Defense Technical Information Center, France, Technical Report AGARD-R-723, 01 Jul 1985.

Bir yolcu uçağına şekil hafızalı alaşım malzemesi uygulanarak dönüşen kanatçık tasarımının ve etkilerinin araştırılması

Yıl 2024, Cilt: 13 Sayı: 2, 419 - 428, 15.04.2024
https://doi.org/10.28948/ngumuh.1396487

Öz

Sürekli araştırma ve geliştirme, başlangıcından bu yana hava araçlarında kanat aerodinamiğini optimize etmeye ve yakıt tüketimini azaltmaya odaklanmıştır. Kanat uçlarındaki sabit kavisli yapılar olan kanatçıklar, havacılık endüstrisindeki yakıt tasarrufu potansiyeli nedeniyle petrol krizi sırasında büyük ilgi görmüştür. Bu çalışma, çeşitli koşullar altında gelişmiş aerodinamik verimlilik ve yakıt ekonomisi için şekil hafızalı alaşım (SMA) kullanan bir geçiş kanatçığı tasarlamaya odaklanmaktadır. XFLR5 yazılımı, farklı eğim açıları için farklı uçak aşamalarında (kalkış, seyir, iniş) kanadın kaldırma ve sürükleme oranlarını analiz eder. Sonuçlar, hareketli bir kanatçığın kaldırma/sürükleme oranını arttırdığını ve indüklenen sürüklemeyi azalttığını göstermektedir. Cant açısı ve hücum açısı (AOA) varyasyonları bu oranın arttırılmasında anahtar rol oynamaktadır. Kanatçıkların hareket ettirilmesine yönelik mevcut mekanizmaların yanı sıra, farklı uçak aşamaları için en uygun değerler belirlenmekte ve tartışılmaktadır. Literatürdeki önceki çalışmalardan elde edilen deneysel verilerin doğrulanması araştırmayı sonuçlandırmaktadır.

Kaynakça

  • E. Torenbeek, Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons, 2013.
  • J. E. Guerrero, D. Maestro and A. Bottaro, Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340, 1–2, 67–80, Jan. 2012. https://doi.org/10.1016/J.CRME.2011.11.007.
  • I. Kroo, Nonplanar wing concepts for increased aircraft efficiency. VKI lecture series on innovative configurations and advanced concepts for future civil aircraft, Stanford University, USA, 2005.
  • I. Kroo, Drag Due to Lift: Concepts for prediction and reduction, Annual Review of Fluid Mechanics. Palo Alto, 33, 1, 587–617, 2001. https://doi.org/10.1146/annurev.fluid.33.1.587.
  • Air Force Studies Board, and National Research Council, Assessment of wingtip modifications to increase the fuel efficiency of air force aircraft. National Academies Press, Washington, DC, 2007.
  • R. Faye, R Laprete and M. Winter, Blended Winglets for Improved Airplane Performance, Aero, Boeing, (17), January 2002.
  • B. S. de Mattos, A. P. Macedo and D. H. da Silva Filho, Considerations about winglet design. 21st AIAA Applied Aerodynamics Conference, 2003. https://doi.org/10.2514/6.2003-3502.
  • R. T. Whitcomb, A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Langley Research Center Hampton, Washington, NASA Technical Note TN D-8260, July 1976.
  • J. E. Guerrero, M. Sanguineti and K. Wittkowski, Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, 55, 10, 1917–1947, 2020. https://doi.org/ 10.1007/S11012-020-01230-1.
  • D. Hartl, B. Volk, D. C. Lagoudas, F. Calkins and J. Mabe, Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons. American Society of Mechanical Engineers, Aerospace Division (Publication) AD, 281–290, 2007. https://doi.org/10.1115/IMECE2006-15029.
  • J. Chambers, Concept to reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s, 2003.
  • NASA, NASA Contribution: Winglets, 2015. http://www.nasa.gov/aero/nasa-contribution-winglets.html, Accessed: 15 November 2022.
  • E. Acar, Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys, Thesis, University of Kentucky, UK, 2014.
  • K. Otsuka and T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull, 27, 2, 91–100, 2002. https://doi.org/10.1557/MRS2002.43.
  • K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-based Shape Memory Alloys. Prog Mater Sci, 50, 5, 511–678, 2005. https://doi.org/10.1016/j.pmatsci.2004.10.001.
  • T.R. Meling, The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires. The Angle Orthodontist, 68(4), 357-368, 1998. https://doi.org/10.1043/0003-3219(1998)068<0357:TEOTOT>2.3.CO;2.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 8th Edition, Chapter 1 Introduction And Basic Concepts, 2015.
  • D. Reynaerts and H. Van Brussel, Design aspects of shape memory actuators. Mechatronics, 8, 6, 635–656, 1998. https://doi.org/10.1016/S0957-4158(98)00023-3.
  • J. B. Allen, Articulating winglets, U.S. Patent, US5988563A, 23 November 1999.
  • J. R. Veile, Wing fold push-pin locking assembly, U.S. Patent, US9469392B2, 19 April 1994.
  • R. M. Bray, Winglet, U.S. Patent, US7988099B2, 02 August 2011.
  • Boeing Commercial, Video: Boeing 777x folding wingtip. https://www.boeing.com/777x/reveal/video-777x-FoldingWingtip/, Accessed December 2022
  • B. Barriety, Wing load alleviation apparatus and method, U.S. Patent, US6827314B2, 07 December 2004.
  • P. Bourdin, A. Gatto and M. I. Friswell, Aircraft Control via Variable Cant-Angle Winglets, 45, 2, 414–423, 2012. https://doi.org/10.2514/1.27720.
  • P. Panagiotou, M. Efthymiadis, D. Mitridis and K. Yakinthos, “A CFD-aided investigation of the morphing winglet concept for the performance optimization of fixed-wing MALE UAVS,” Aerospace Research Central, 42, 2018. https://doi.org/10.2514/6.2018-4220.
  • P. Dees and M. Sankrithi, Wing load alleviation apparatus and method, U.S. Patent, US20070114327A1, 24 May 2007.
  • A. M. Pankonien, Smart Material Wing Morphing for Unmanned Aerial Vehicles. Thesis, Unıversıty Of Mıchıgan Library, USA, 2015.
  • P. Marks, ‘Morphing’ winglets to boost aircraft efficiency, New Scientist, 201, 2692, 22–23, 21 January 2009. https://doi.org/10.1016/S0262-4079(09)60208-6.
  • NASA, NASA Tests New Alloy to Fold Wings in Flight. https://www.nasa.gov/aeronautics/nasa-tests-new-alloy-to-fold-wings-in-flight/, Accessed: 25 December 2022.
  • A.P. Mouritz, Titanium alloys for aerospace structures and engines, Introduction to Aerospace Materials, Woodhead Publishing Limited, Sawston, U.K., pp. 202–223, 2012. https://doi.org/10.1533/9780857095152.202.
  • M. Kumar, S. Bal and B. Girish, Proceedings of First Joint International Conference on Advances in Mechanical and Aerospace Engineering, pp. 239, Alliance University, Bengaluru, India, December 2023.
  • E. S. Rutowski, Energy Approach to the General Aircraft Performance Problem, Aerospace Research Central, 21, 3, 187–195, 2012. https://doi.org/10.2514/8.2956.
  • Boeing, 737 Airplane Characterisitics for Airport Planing. https://www.slideshare.net/RenzoJoseJuradoRolon/737-66864457/, Accessed: 06 March 2024.
  • A. Thomas, W. Saric, A. Braslow and D. Bushnell, Aircraft Drag Prediction and Reduction. Defense Technical Information Center, France, Technical Report AGARD-R-723, 01 Jul 1985.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Kaplan Bu kişi benim 0009-0005-4322-9459

Sedat Nezih Karaal Bu kişi benim 0009-0009-2966-4509

Rafet Bodur Bu kişi benim 0009-0008-4432-9226

Hasan Bora Bu kişi benim 0009-0007-5095-6800

Görkem Şakacı Bu kişi benim 0009-0005-0443-9170

Furkan Datlı Bu kişi benim 0009-0002-8542-8008

Fahrettin Öztürk 0000-0001-9517-7957

Erken Görünüm Tarihi 11 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 11 Aralık 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Kaplan, A., Karaal, S. N., Bodur, R., Bora, H., vd. (2024). Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 419-428. https://doi.org/10.28948/ngumuh.1396487
AMA Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):419-428. doi:10.28948/ngumuh.1396487
Chicago Kaplan, Ahmet, Sedat Nezih Karaal, Rafet Bodur, Hasan Bora, Görkem Şakacı, Furkan Datlı, ve Fahrettin Öztürk. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 419-28. https://doi.org/10.28948/ngumuh.1396487.
EndNote Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F (01 Nisan 2024) Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 419–428.
IEEE A. Kaplan, “Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 419–428, 2024, doi: 10.28948/ngumuh.1396487.
ISNAD Kaplan, Ahmet vd. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 419-428. https://doi.org/10.28948/ngumuh.1396487.
JAMA Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NÖHÜ Müh. Bilim. Derg. 2024;13:419–428.
MLA Kaplan, Ahmet vd. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 419-28, doi:10.28948/ngumuh.1396487.
Vancouver Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NÖHÜ Müh. Bilim. Derg. 2024;13(2):419-28.

 23135