Araştırma Makalesi
BibTex RIS Kaynak Göster

Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds

Yıl 2024, Cilt: 13 Sayı: 2, 738 - 744, 15.04.2024
https://doi.org/10.28948/ngumuh.1443273

Öz

Grape seeds, a valuable by-product of winemaking, are rich in bioactive compounds with significant economic potential. However, pesticide residues in grape seeds pose risks to human health and product quality. This study explores innovative technologies including cold plasma, ultrasound, aqueous ozone, and gaseous ozone to eliminate pesticide residues from grape seeds. Cold plasma treatment emerged as highly effective, completely eliminating certain pesticides like Triadimenol and Azoxystrobin. Ultrasound treatment also showed promising results, particularly in reducing Pyrimethanil residues. Aqueous ozone treatment achieved moderate reductions, while gaseous ozone exhibited the least efficacy. Factors influencing efficacy included pesticide type, treatment duration, and matrix characteristics. Future research should focus on optimizing parameters to enhance pesticide removal while minimizing impacts on product quality. These findings indicate the importance of tailored approaches for pesticide elimination, contributing to safer agricultural practices and consumer health.

Teşekkür

I would like to express my gratitude to Prof. Dr. Ümit Geçgel and Prof. Dr. Ahmet Şükrü Demirci for their invaluable contributions in providing materials and their unwavering support throughout this research endeavor.

Kaynakça

  • N. Göktürk Baydar, G. Özkan and E.S. Çetin, Characterization of grape seed and pomace oil extracts, Grasas y Aceites, 58, 29–33, 2007. https://doi.org/10.3989/gya.2007.v58.i1.5.
  • R. Sirohi, A. Tarafdar, S. Singh, T. Negi, V.K. Gaur, E. Gnansounou and B. Bharathiraja, Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery, Bioresource Technology, 314, 2020. https://doi.org/10.1016/j.biortech.2020.123771.
  • M. Oliveira and E. Duarte, Integrated approach to winery waste: waste generation and data consolidation, Frontiers of Environmental Science & Engineering, 10, 168–176, 2016. https://doi.org/10.1007/s11783-014-0693-6.
  • I.R. Da Mata, S.M. Dal Bosco and J. Garavaglia, Different biological activities (antimicrobial, antitumoral, and antioxidant activities) of grape seed oil, in: Multiple Biological Activities of Unconventional Seed Oils, Academic Pres, Elsevier, 215–227, 2022. https://doi.org/10.1016/B978-0-12-824135-6.00029-5.
  • C. Rodríguez-Pérez, B. García-Villanova, E. Guerra-Hernández and V. Verardo, Grape seeds proanthocyanidins: An overview of in vivo bioactivity in animal models, Nutrients, 11, 2019. https://doi.org/10.3390/nu11102435.
  • Food and Agriculture Organization, Pesticides Use, The US, 2022.
  • C.S. Jacobsen and M.H. Hjelmsø, Agricultural soils, pesticides and microbial diversity, Current Opinion in Biotechnology, 27, 15–20, 2014. https://doi.org/10.1016/j.copbio.2013.09.003.
  • N. Kumar, A.K. Pathera, P. Saini and M. Kumar, Harmful effects of pesticides on human health, Annals of Agri-Bio Research, 17(2), 125–127, 2012.
  • G. Bellisai, G. Bernasconi, L.C. Cabrera, I. Castellan, M. del Aguila, L. Ferreira, G.G. Santonja, L. Greco, S. Jarrah, R. Leuschner, J.M. Perez, I. Miron, S. Nave, R. Pedersen, H. Reich, S. Ruocco, M. Santos, A.P. Scarlato, A. Theobald, M. Tiramani and A. Verani, Modification of the existing maximum residue levels for pyrimethanil in table grapes, garlic and honey, EFSA Journal, 21, 2023. https://doi.org/10.2903/j.efsa.2023.8195.
  • C. of the E.U. European Parliament, Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC Text with EEA relevance, Official Journal of the European Union, 70, 2005.
  • G. Rose, S. Lane and R. Jordan, The fate of fungicide and insecticide residues in Australian wine grape by-products following field application, Food Chemistry, 117, 634–640, 2009. https://doi.org/10.1016/j.foodchem.2009.04.061.
  • D.T. Likas and N.G. Tsiropoulos, Fate of three insect growth regulators (IGR) insecticides (flufenoxuron, lufenuron and tebufenozide) in grapes following field application and through the wine-making process, Food Additives and Contaminants - Part A, 28, 189–197, 2011. https://doi.org/10.1080/19440049.2010.542184.
  • P. Cabras and A. Angioni, Pesticide residues in grapes, wine, and their processing products, Journal of Agricultural and Food Chemistry, 48, 967–973, 2000. https://doi.org/10.1021/jf990727a.
  • Ma.L. Ortiz-Hernández, M.L. Castrejón-Godínez, E.C. Popoca-Ursino, F.R. Cervantes-Dacasa and M. Fernández-López, Strategies for Biodegradation and Bioremediation of Pesticides in the Environment, in: M. Fuentes, V. Colin, J. Saez (Eds.), Strategies for Bioremediation of Organic and Inorganic Pollutants, CRC Press, 87–100, 2018.
  • T. Djordjevic and R. Djurovic-Pejcev, Food processing as a means for pesticide residue dissipation, Pesticidi i Fitomedicina, 31, 89–105, 2016. https://doi.org/10.2298/pif1604089d.
  • U. Bajwa and K.S. Sandhu, Effect of handling and processing on pesticide residues in food- A review, J Food Science Technology, 51, 201–220, 2014. https://doi.org/10.1007/s13197-011-0499-5.
  • K.T.K. Phan, H.T. Phan, D. Boonyawan, P. Intipunya, C.S. Brennan, J.M. Regenstein and Y. Phimolsiripol, Non-thermal plasma for elimination of pesticide residues in mango, Innovative Food Science & Emerging Technologies, 48, 164–171, 2018. https://doi.org/10.1016/J.IFSET.2018.06.009.
  • N.S. Heo, M.K. Lee, G.W. Kim, S.J. Lee, J.Y. Park and T.J. Park, Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments, Journal of Bioscience and Bioengineering, 117, 81–85, 2014. https://doi.org/10.1016/j.jbiosc.2013.06.007.
  • S. Wang, J. Wang, T. Wang, C. Li and Z. Wu, Effects of ozone treatment on pesticide residues in food: A review, International Journal of Food Science & Technology, 54(2), 301-312, 2019. https://doi.org/10.1111/ijfs.13938.
  • W. Wang, Z. Gao, C. Qiao, F. Liu and Q. Peng, Residue analysis and removal of procymidone in cucumber after field application, Food Control, 128, 108168, 2021. https://doi.org/10.1016/j.foodcont.2021.108168.
  • X.D. Fan, W.L. Zhang, H.Y. Xiao, T.Q. Qiu and J.G. Jiang, Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce, RSC Advances, 5, 45622–45630, 2015. https://doi.org/10.1039/C5RA03024B.
  • M. Gavahian, C. Sarangapani and N.N. Misra, Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies, Food Research International, 141, 2021. https://doi.org/10.1016/j.foodres.2021.110138.
  • AOAC, AOAC Official Method 2007.01 Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry First Action, 2007.
  • P. Sojithamporn, K. Leksakul, C. Sawangrat, N. Charoenchai and D. Boonyawan, Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology, Foods, 12, 2023. https://doi.org/10.3390/foods12244386.
  • E.T. Rodrigues, I. Lopes and M.Â. Pardal, Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review, Environment International, 53, 18–28, 2013. https://doi.org/10.1016/j.envint.2012.12.005.
  • C. Sarangapani, G. O’Toole, P.J. Cullen and P. Bourke, Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries, Innovative Food Science & Emerging Technologies, 44, 235–241, 2017. https://doi.org/10.1016/J.IFSET.2017.02.012.
  • N.N. Misra, S.K. Pankaj, T. Walsh, F. O’Regan, P. Bourke and P.J. Cullen, In-package nonthermal plasma degradation of pesticides on fresh produce, Journal of Hazardous Materials, 271, 33–40, 2014. https://doi.org/10.1016/J.JHAZMAT.2014.02.005.
  • S.A. Mir, B.N. Dar, M.M. Mir, S.A. Sofi, A. Shah, T. Sidiq, K.V. Sunooj, A.M. Hamdani and A.M. Khaneghah, Current strategies for the reduction of pesticide residues in food products, Journal of Food Composition and Analysis, 106, 104274, 2022. https://doi.org/10.1016/j.jfca.2021.104274.
  • N. Bhargava, R.S. Mor, K. Kumar and V. Singh Sharanagat, Advances in application of ultrasound in food processing: A review, Ultrasonics Sonochemistry, 70, 105293, 2021. https://doi.org/10.1016/ j.ultsonch.2020.105293.
  • M.F. Cengiz, M. Başlar, O. Basançelebi and M. Kılıçlı, Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications, Food Chemistry, 267, 60–66, 2018. https://doi.org/10.1016/j.foodchem.2017.08.031.
  • B. Lozowicka, M. Jankowska, I. Hrynko and P. Kaczynski, Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling, Environmental Monitoring and Assessment, 188, 1–19, 2016. https://doi.org/10.1007/s10661-015-4850-6.
  • Q. Zhou, Y. Bian, Q. Peng ⁎, F. Liu, W. Wang and F. Chen, The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape, Food Chemistry, 298, 2019. https://doi.org/10.1016/j.foodchem.2019.125007.
  • Y. Zhu, T. Zhang, D. Xu, S. Wang, Y. Yuan, S. He and Y. Cao, The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment, Food Control, 95, 176–180, 2019. https://doi.org/10.1016/j.foodcont.2018.07.039.
  • Z.B. Guzel-Seydim, A.K. Greene and A.C. Seydim, Use of ozone in the food industry, LWT, 37, 453–460, 2004. https://doi.org/10.1016/j.lwt.2003.10.014.
  • M.M. Al-Dabbas, A.A. Shaderma, T.M. Al-Antary, H.A. Ghazzawi and H.J. Hamad, Effect of Ozonation on Cypermethrin and Chlorpyrifos Pesticides Residues Degradation in Tomato Fruits, Fresenius Environmental Bulletin, 27, 6628–6633, 2018.
  • A.A.Z. Rodrigues, M.E.R.L. De Queiroz, A.A. Neves, A.F. De Oliveira, L. Henrique, F. Prates, J. Faêda De Freitas, F. Fernandes Heleno, L. Rita D’ and A. Faroni, Use of ozone and detergent for removal of pesticides and improving storage quality of tomato, Food Research International, 125, 2019. https://doi.org/10.1016/j.foodres.2019.108626.
  • J. Wu, T. Luan, C. Lan, T. Wai, H. Lo, G. Yuk and S. Chan, Removal of residual pesticides on vegetable using ozonated water, Food Control, 18, 466–472, 2007. https://doi.org/10.1016/j.foodcont.2005.12.011.
  • H. Karaca, S.S. Walse and J.L. Smilanick, Effect of continuous 0.3μL/L gaseous ozone exposure on fungicide residues on table grape berries, Postharvest Biology and Technology, 64, 154–159, 2012. https://doi.org/10.1016/j.postharvbio.2011.07.004.
  • L. Pellanda De Souza, L. Rita D’, A. Faroni, F. Fernandes Heleno, F.G. Pinto, M.E. Lopes, R. De Queiroz, L. Henrique and F. Prates, Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology, Food Chemistry, 243, 435–441, 2017. https://doi.org/10.1016/j.foodchem. 2017.09.134.
  • E. Kusvuran, D. Yildirim, F. Mavruk and M. Ceyhan, Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide residues from citrus by using ozone, Journal of Hazardous Materials, 287–300, 2012. https://doi.org/10.1016/j.jhazmat.2012.09.043.

Üzüm çekirdeklerinde pestisit içeriğinin azaltılması için yenilikçi teknolojiler

Yıl 2024, Cilt: 13 Sayı: 2, 738 - 744, 15.04.2024
https://doi.org/10.28948/ngumuh.1443273

Öz

Üzüm çekirdekleri, şarap üretimi sırasında ortaya çıkan değerli bir yan üründür ve biyoaktif bileşikler açısından zengin olmalarıyla dikkat çekerler. Ancak, bu çekirdeklerde bulunan pestisit kalıntıları, insan sağlığı ve ürün kalitesi açısından ciddi bir endişe kaynağıdır. Bu çalışma, üzüm çekirdeklerinden pestisit kalıntılarını azaltmak için soğuk plazma, ultrason, sulu ozon ve gaz ozon gibi yenilikçi teknolojileri araştırmaktadır. Yapılan deneylerde, özellikle soğuk plazma işleminin Triadimenol ve Azoksistrobin gibi belirli pestisitleri tamamen ortadan kaldırdığı gözlemlenmiştir. Diğer taraftan, ultrason işlemi özellikle Pirimetanil kalıntılarını azaltmada etkili olmuştur. Sulu ozon ve gaz ozon işlemleri ise daha az etkili bulunmuştur. Bu bulgular, pestisitlerin ortadan kaldırılması için özelleştirilmiş yaklaşımların önemini vurgulayarak, daha güvenli tarımsal uygulamalara ve tüketici sağlığına katkıda bulunmaktadır.

Teşekkür

I would like to express my gratitude to Prof. Dr. Ümit Geçgel and Prof. Dr. Ahmet Şükrü Demirci for their invaluable contributions in providing materials and their unwavering support throughout this research endeavor.

Kaynakça

  • N. Göktürk Baydar, G. Özkan and E.S. Çetin, Characterization of grape seed and pomace oil extracts, Grasas y Aceites, 58, 29–33, 2007. https://doi.org/10.3989/gya.2007.v58.i1.5.
  • R. Sirohi, A. Tarafdar, S. Singh, T. Negi, V.K. Gaur, E. Gnansounou and B. Bharathiraja, Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery, Bioresource Technology, 314, 2020. https://doi.org/10.1016/j.biortech.2020.123771.
  • M. Oliveira and E. Duarte, Integrated approach to winery waste: waste generation and data consolidation, Frontiers of Environmental Science & Engineering, 10, 168–176, 2016. https://doi.org/10.1007/s11783-014-0693-6.
  • I.R. Da Mata, S.M. Dal Bosco and J. Garavaglia, Different biological activities (antimicrobial, antitumoral, and antioxidant activities) of grape seed oil, in: Multiple Biological Activities of Unconventional Seed Oils, Academic Pres, Elsevier, 215–227, 2022. https://doi.org/10.1016/B978-0-12-824135-6.00029-5.
  • C. Rodríguez-Pérez, B. García-Villanova, E. Guerra-Hernández and V. Verardo, Grape seeds proanthocyanidins: An overview of in vivo bioactivity in animal models, Nutrients, 11, 2019. https://doi.org/10.3390/nu11102435.
  • Food and Agriculture Organization, Pesticides Use, The US, 2022.
  • C.S. Jacobsen and M.H. Hjelmsø, Agricultural soils, pesticides and microbial diversity, Current Opinion in Biotechnology, 27, 15–20, 2014. https://doi.org/10.1016/j.copbio.2013.09.003.
  • N. Kumar, A.K. Pathera, P. Saini and M. Kumar, Harmful effects of pesticides on human health, Annals of Agri-Bio Research, 17(2), 125–127, 2012.
  • G. Bellisai, G. Bernasconi, L.C. Cabrera, I. Castellan, M. del Aguila, L. Ferreira, G.G. Santonja, L. Greco, S. Jarrah, R. Leuschner, J.M. Perez, I. Miron, S. Nave, R. Pedersen, H. Reich, S. Ruocco, M. Santos, A.P. Scarlato, A. Theobald, M. Tiramani and A. Verani, Modification of the existing maximum residue levels for pyrimethanil in table grapes, garlic and honey, EFSA Journal, 21, 2023. https://doi.org/10.2903/j.efsa.2023.8195.
  • C. of the E.U. European Parliament, Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC Text with EEA relevance, Official Journal of the European Union, 70, 2005.
  • G. Rose, S. Lane and R. Jordan, The fate of fungicide and insecticide residues in Australian wine grape by-products following field application, Food Chemistry, 117, 634–640, 2009. https://doi.org/10.1016/j.foodchem.2009.04.061.
  • D.T. Likas and N.G. Tsiropoulos, Fate of three insect growth regulators (IGR) insecticides (flufenoxuron, lufenuron and tebufenozide) in grapes following field application and through the wine-making process, Food Additives and Contaminants - Part A, 28, 189–197, 2011. https://doi.org/10.1080/19440049.2010.542184.
  • P. Cabras and A. Angioni, Pesticide residues in grapes, wine, and their processing products, Journal of Agricultural and Food Chemistry, 48, 967–973, 2000. https://doi.org/10.1021/jf990727a.
  • Ma.L. Ortiz-Hernández, M.L. Castrejón-Godínez, E.C. Popoca-Ursino, F.R. Cervantes-Dacasa and M. Fernández-López, Strategies for Biodegradation and Bioremediation of Pesticides in the Environment, in: M. Fuentes, V. Colin, J. Saez (Eds.), Strategies for Bioremediation of Organic and Inorganic Pollutants, CRC Press, 87–100, 2018.
  • T. Djordjevic and R. Djurovic-Pejcev, Food processing as a means for pesticide residue dissipation, Pesticidi i Fitomedicina, 31, 89–105, 2016. https://doi.org/10.2298/pif1604089d.
  • U. Bajwa and K.S. Sandhu, Effect of handling and processing on pesticide residues in food- A review, J Food Science Technology, 51, 201–220, 2014. https://doi.org/10.1007/s13197-011-0499-5.
  • K.T.K. Phan, H.T. Phan, D. Boonyawan, P. Intipunya, C.S. Brennan, J.M. Regenstein and Y. Phimolsiripol, Non-thermal plasma for elimination of pesticide residues in mango, Innovative Food Science & Emerging Technologies, 48, 164–171, 2018. https://doi.org/10.1016/J.IFSET.2018.06.009.
  • N.S. Heo, M.K. Lee, G.W. Kim, S.J. Lee, J.Y. Park and T.J. Park, Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments, Journal of Bioscience and Bioengineering, 117, 81–85, 2014. https://doi.org/10.1016/j.jbiosc.2013.06.007.
  • S. Wang, J. Wang, T. Wang, C. Li and Z. Wu, Effects of ozone treatment on pesticide residues in food: A review, International Journal of Food Science & Technology, 54(2), 301-312, 2019. https://doi.org/10.1111/ijfs.13938.
  • W. Wang, Z. Gao, C. Qiao, F. Liu and Q. Peng, Residue analysis and removal of procymidone in cucumber after field application, Food Control, 128, 108168, 2021. https://doi.org/10.1016/j.foodcont.2021.108168.
  • X.D. Fan, W.L. Zhang, H.Y. Xiao, T.Q. Qiu and J.G. Jiang, Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce, RSC Advances, 5, 45622–45630, 2015. https://doi.org/10.1039/C5RA03024B.
  • M. Gavahian, C. Sarangapani and N.N. Misra, Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies, Food Research International, 141, 2021. https://doi.org/10.1016/j.foodres.2021.110138.
  • AOAC, AOAC Official Method 2007.01 Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry First Action, 2007.
  • P. Sojithamporn, K. Leksakul, C. Sawangrat, N. Charoenchai and D. Boonyawan, Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology, Foods, 12, 2023. https://doi.org/10.3390/foods12244386.
  • E.T. Rodrigues, I. Lopes and M.Â. Pardal, Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review, Environment International, 53, 18–28, 2013. https://doi.org/10.1016/j.envint.2012.12.005.
  • C. Sarangapani, G. O’Toole, P.J. Cullen and P. Bourke, Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries, Innovative Food Science & Emerging Technologies, 44, 235–241, 2017. https://doi.org/10.1016/J.IFSET.2017.02.012.
  • N.N. Misra, S.K. Pankaj, T. Walsh, F. O’Regan, P. Bourke and P.J. Cullen, In-package nonthermal plasma degradation of pesticides on fresh produce, Journal of Hazardous Materials, 271, 33–40, 2014. https://doi.org/10.1016/J.JHAZMAT.2014.02.005.
  • S.A. Mir, B.N. Dar, M.M. Mir, S.A. Sofi, A. Shah, T. Sidiq, K.V. Sunooj, A.M. Hamdani and A.M. Khaneghah, Current strategies for the reduction of pesticide residues in food products, Journal of Food Composition and Analysis, 106, 104274, 2022. https://doi.org/10.1016/j.jfca.2021.104274.
  • N. Bhargava, R.S. Mor, K. Kumar and V. Singh Sharanagat, Advances in application of ultrasound in food processing: A review, Ultrasonics Sonochemistry, 70, 105293, 2021. https://doi.org/10.1016/ j.ultsonch.2020.105293.
  • M.F. Cengiz, M. Başlar, O. Basançelebi and M. Kılıçlı, Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications, Food Chemistry, 267, 60–66, 2018. https://doi.org/10.1016/j.foodchem.2017.08.031.
  • B. Lozowicka, M. Jankowska, I. Hrynko and P. Kaczynski, Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling, Environmental Monitoring and Assessment, 188, 1–19, 2016. https://doi.org/10.1007/s10661-015-4850-6.
  • Q. Zhou, Y. Bian, Q. Peng ⁎, F. Liu, W. Wang and F. Chen, The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape, Food Chemistry, 298, 2019. https://doi.org/10.1016/j.foodchem.2019.125007.
  • Y. Zhu, T. Zhang, D. Xu, S. Wang, Y. Yuan, S. He and Y. Cao, The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment, Food Control, 95, 176–180, 2019. https://doi.org/10.1016/j.foodcont.2018.07.039.
  • Z.B. Guzel-Seydim, A.K. Greene and A.C. Seydim, Use of ozone in the food industry, LWT, 37, 453–460, 2004. https://doi.org/10.1016/j.lwt.2003.10.014.
  • M.M. Al-Dabbas, A.A. Shaderma, T.M. Al-Antary, H.A. Ghazzawi and H.J. Hamad, Effect of Ozonation on Cypermethrin and Chlorpyrifos Pesticides Residues Degradation in Tomato Fruits, Fresenius Environmental Bulletin, 27, 6628–6633, 2018.
  • A.A.Z. Rodrigues, M.E.R.L. De Queiroz, A.A. Neves, A.F. De Oliveira, L. Henrique, F. Prates, J. Faêda De Freitas, F. Fernandes Heleno, L. Rita D’ and A. Faroni, Use of ozone and detergent for removal of pesticides and improving storage quality of tomato, Food Research International, 125, 2019. https://doi.org/10.1016/j.foodres.2019.108626.
  • J. Wu, T. Luan, C. Lan, T. Wai, H. Lo, G. Yuk and S. Chan, Removal of residual pesticides on vegetable using ozonated water, Food Control, 18, 466–472, 2007. https://doi.org/10.1016/j.foodcont.2005.12.011.
  • H. Karaca, S.S. Walse and J.L. Smilanick, Effect of continuous 0.3μL/L gaseous ozone exposure on fungicide residues on table grape berries, Postharvest Biology and Technology, 64, 154–159, 2012. https://doi.org/10.1016/j.postharvbio.2011.07.004.
  • L. Pellanda De Souza, L. Rita D’, A. Faroni, F. Fernandes Heleno, F.G. Pinto, M.E. Lopes, R. De Queiroz, L. Henrique and F. Prates, Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology, Food Chemistry, 243, 435–441, 2017. https://doi.org/10.1016/j.foodchem. 2017.09.134.
  • E. Kusvuran, D. Yildirim, F. Mavruk and M. Ceyhan, Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide residues from citrus by using ozone, Journal of Hazardous Materials, 287–300, 2012. https://doi.org/10.1016/j.jhazmat.2012.09.043.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Göksel Tırpancı Sivri 0000-0001-9192-2825

Erken Görünüm Tarihi 8 Nisan 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 26 Şubat 2024
Kabul Tarihi 26 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Tırpancı Sivri, G. (2024). Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 738-744. https://doi.org/10.28948/ngumuh.1443273
AMA Tırpancı Sivri G. Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):738-744. doi:10.28948/ngumuh.1443273
Chicago Tırpancı Sivri, Göksel. “Innovative Frontiers: Advancing Technologies for Pesticide Elimination in Grape Seeds”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 738-44. https://doi.org/10.28948/ngumuh.1443273.
EndNote Tırpancı Sivri G (01 Nisan 2024) Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 738–744.
IEEE G. Tırpancı Sivri, “Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 738–744, 2024, doi: 10.28948/ngumuh.1443273.
ISNAD Tırpancı Sivri, Göksel. “Innovative Frontiers: Advancing Technologies for Pesticide Elimination in Grape Seeds”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 738-744. https://doi.org/10.28948/ngumuh.1443273.
JAMA Tırpancı Sivri G. Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds. NÖHÜ Müh. Bilim. Derg. 2024;13:738–744.
MLA Tırpancı Sivri, Göksel. “Innovative Frontiers: Advancing Technologies for Pesticide Elimination in Grape Seeds”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 738-44, doi:10.28948/ngumuh.1443273.
Vancouver Tırpancı Sivri G. Innovative frontiers: Advancing technologies for pesticide elimination in grape seeds. NÖHÜ Müh. Bilim. Derg. 2024;13(2):738-44.

 23135