Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Outdoor Shading Devices Effects on Thermal Comfort Conditions

Yıl 2023, Cilt: 28 Sayı: 2, 684 - 694, 31.08.2023
https://doi.org/10.53433/yyufbed.1215174

Öz

In the study, shading elements, which have an important function in improving the microclimate in the urban environment and the thermal comfort conditions of the user in the summer period, are discussed. It is aimed to reveal the effects of natural and artificial shade elements selected in six different areas on the outdoor thermal comfort conditions in the Selcuk University campus. On a typical summer day, short-term in situ micro-meteorological measurements were made to determine the effect of shading elements on outdoor thermal comfort conditions in these spaces. With micro-meteorological measurements, air temperature (Ta, °C), relative humidity (RH, %), wind speed (WS, m/sn) and mean radiant temperature (MRT, °C) values were determined between 13:30-15:30 hours, which has the highest temperature values during the day. By comparing the micro-meteorological values to be obtained under and near the shading elements, the effect of shading elements on the microclimate and outdoor thermal comfort conditions has been discussed. Outdoor thermal comfort conditions were calculated with PET (physiological equivalent temperature) index in this study. As a result of the study, it was determined that the shade elements that provide the best thermal comfort conditions are American ivy and willow tree.

Kaynakça

  • Canan, F., Golasi, I., Ciancio, V., Coppi, M., & Salata, F. (2019). Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey). Building and Environment, 148, 212 - 224. doi:10.1016/j.buildenv.2018.11.008
  • Canan, F., Golasi, I., Falasca, S., & Salata, F. (2020). Outdoor thermal perception and comfort conditions in the Köppen-Geiger climate category BSk. One-year field survey and measurement campaign in Konya, Turkey. Science of the Total Environment, 738, 140295. doi:10.1016/j.scitotenv.2020.140295
  • Canan, F., & Geyikli H.B. (2022, Haziran). Dış ortam termal konfor koşullarının belirlenmesinde özgün veri kullanımının önemi. 8. Uluslararası Mardin Artuklu Bilimsel Araştırmalar Kongresi, Mardin-Türkiye.
  • Charalampopoulos, I., Tsiros, I., Chronopoulou-Sereli, A., & Matzarakis, A. (2013). Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems, 16, 217 - 233. doi:10.1007/s11252-012-0252-5
  • Crank, P. J., Sailor, D. J., Ban-Weiss, G., & Taleghani, M. (2018). Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Climate, 26, 188 - 197. doi:10.1016/j.uclim.2018.09.002
  • Deevi, B., & Chundeli, F. A. (2020). Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Climate, 34, 100718. doi:10.1016/j.uclim.2020.100718
  • de Morais, M. V. B., Marciotto, E. R., Guerrero, V. V. U., & de Freitas, E. D. (2017). Effective albedo estimates for the Metropolitan Area of São Paulo using empirical sky-view factors. Urban Climate, 21, 183 - 194. doi:10.1016/j.uclim.2017.06.007
  • Fahed, J., Kinab, E., Ginestet, S., & Adolphe, L. (2020). Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustainable Cities and Society, 61, 102375. doi:10.1016/j.scs.2020.102375
  • Farhadi, H., Faizi, M., & Sanaieian, H. (2019). Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 46, 101448. doi:10.1016/j.scs.2019.101448
  • ISO 7726. (1998). Ergonomics of the Thermal Environment - Instruments for Measuring Physical Quantities.
  • Jia, S., & Wang, Y. (2021). Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 201, 107988. doi:10.1016/j.buildenv.2021.107988
  • Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban Climate, 10, 346 – 366. doi:10.1016/j.uclim.2013.12.002
  • Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670 - 1684. doi:10.1016/j.egyr.2020.06.015
  • Li, G., Ren, Z., & Zhan, C. (2020). Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 169, 106587. doi.org/10.1016/j.buildenv.2019.106587
  • Lindberg, F. (2014). SOLWEIG1D - User Manual - Version 2015a Göteborg Urban Climate Group, University of Gothenburg.
  • Lyu, T., Buccolieri, R., & Gao, Z. (2019). A numerical study on the correlation between sky view factor and summer microclimate of local climate zones. Atmosphere, 10(8), 438. doi:10.3390/atmos10080438
  • Nasrollahi, N., Namazi, Y., & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 65, 102638. doi:10.1016/j.scs.2020.102638
  • Noro, M., & Lazzarin, R. (2015). Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Climate, 14, 187-196. doi:10.1016/j.uclim.2015.04.004
  • Oke, T. R. (1987). Boundary Layer Climates (2nd ed.). London, UK: Routledge, Taylor & Francis Group. doi:10.4324/9780203407219
  • Potchter, O., Cohen, P., Lin, T., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment 631 - 632, 390 - 406. doi:10.1016/j.scitotenv.2018.02.276
  • Salvati, A., Kolokotroni, M., Kotopouleas, A., Watkins, R., Giridharan, R., & Nikolopoulou, M. (2022). Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Building and Environment, 207, 108459. doi:10.1016/j.buildenv.2021.108459

Dış Mekân Gölgeleme Elemanlarının Termal Konfor Koşullarına Etkilerinin Değerlendirilmesi

Yıl 2023, Cilt: 28 Sayı: 2, 684 - 694, 31.08.2023
https://doi.org/10.53433/yyufbed.1215174

Öz

Çalışmada, kent ortamında mikroklimayı ve kullanıcının termal konfor koşullarını yaz döneminde iyileştirmede önemli fonksiyonu olan gölgeleme elemanları ele alınmakta ve Selçuk Üniversitesi yerleşkesinde altı farklı alanda seçilmiş olan doğal ve yapay gölge elemanlarının dış ortam termal konfor koşullarına etkilerinin ortaya konması amaçlanmaktadır. Tipik bir yaz gününde, bu mekânlarda gölgeleme elemanlarının dış ortam termal konfor koşullarına etkisinin belirlenmesi için kısa süreli yerinde mikro-meteorolojik ölçümler yapılmıştır. Mikro-meteorolojik ölçümlerle; anlık hava sıcaklığı (Ta, °C), bağıl nem (RH, %), rüzgâr hızı (WS, m/sn) ve ortalama radyant sıcaklık (MRT, °C) değerleri gün içindeki en yüksek sıcaklık değerlerine sahip 13:30-15:30 saat aralığında belirlenmiştir. Gölgeleme elemanlarının altında ve yakınlarında elde edilecek mikro-meteorolojik değerler kıyaslanarak gölgeleme elemanlarının, mikroklimaya ve dış ortam termal konfor koşullarına olan etkisi tartışmaya açılmıştır. Dış ortam termal konfor koşulları bu çalışmada PET (Fizyolojik eşdeğer sıcaklık) indisi ile hesaplanmıştır. Çalışmanın sonucunda en iyi termal konfor koşulları sağlayan gölge elemanlarının Amerikan sarmaşığı ve söğüt ağacı olduğu saptanmıştır.

Kaynakça

  • Canan, F., Golasi, I., Ciancio, V., Coppi, M., & Salata, F. (2019). Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey). Building and Environment, 148, 212 - 224. doi:10.1016/j.buildenv.2018.11.008
  • Canan, F., Golasi, I., Falasca, S., & Salata, F. (2020). Outdoor thermal perception and comfort conditions in the Köppen-Geiger climate category BSk. One-year field survey and measurement campaign in Konya, Turkey. Science of the Total Environment, 738, 140295. doi:10.1016/j.scitotenv.2020.140295
  • Canan, F., & Geyikli H.B. (2022, Haziran). Dış ortam termal konfor koşullarının belirlenmesinde özgün veri kullanımının önemi. 8. Uluslararası Mardin Artuklu Bilimsel Araştırmalar Kongresi, Mardin-Türkiye.
  • Charalampopoulos, I., Tsiros, I., Chronopoulou-Sereli, A., & Matzarakis, A. (2013). Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosystems, 16, 217 - 233. doi:10.1007/s11252-012-0252-5
  • Crank, P. J., Sailor, D. J., Ban-Weiss, G., & Taleghani, M. (2018). Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Climate, 26, 188 - 197. doi:10.1016/j.uclim.2018.09.002
  • Deevi, B., & Chundeli, F. A. (2020). Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Climate, 34, 100718. doi:10.1016/j.uclim.2020.100718
  • de Morais, M. V. B., Marciotto, E. R., Guerrero, V. V. U., & de Freitas, E. D. (2017). Effective albedo estimates for the Metropolitan Area of São Paulo using empirical sky-view factors. Urban Climate, 21, 183 - 194. doi:10.1016/j.uclim.2017.06.007
  • Fahed, J., Kinab, E., Ginestet, S., & Adolphe, L. (2020). Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustainable Cities and Society, 61, 102375. doi:10.1016/j.scs.2020.102375
  • Farhadi, H., Faizi, M., & Sanaieian, H. (2019). Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 46, 101448. doi:10.1016/j.scs.2019.101448
  • ISO 7726. (1998). Ergonomics of the Thermal Environment - Instruments for Measuring Physical Quantities.
  • Jia, S., & Wang, Y. (2021). Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 201, 107988. doi:10.1016/j.buildenv.2021.107988
  • Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies–The need for standardization. Urban Climate, 10, 346 – 366. doi:10.1016/j.uclim.2013.12.002
  • Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670 - 1684. doi:10.1016/j.egyr.2020.06.015
  • Li, G., Ren, Z., & Zhan, C. (2020). Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 169, 106587. doi.org/10.1016/j.buildenv.2019.106587
  • Lindberg, F. (2014). SOLWEIG1D - User Manual - Version 2015a Göteborg Urban Climate Group, University of Gothenburg.
  • Lyu, T., Buccolieri, R., & Gao, Z. (2019). A numerical study on the correlation between sky view factor and summer microclimate of local climate zones. Atmosphere, 10(8), 438. doi:10.3390/atmos10080438
  • Nasrollahi, N., Namazi, Y., & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 65, 102638. doi:10.1016/j.scs.2020.102638
  • Noro, M., & Lazzarin, R. (2015). Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Climate, 14, 187-196. doi:10.1016/j.uclim.2015.04.004
  • Oke, T. R. (1987). Boundary Layer Climates (2nd ed.). London, UK: Routledge, Taylor & Francis Group. doi:10.4324/9780203407219
  • Potchter, O., Cohen, P., Lin, T., & Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment 631 - 632, 390 - 406. doi:10.1016/j.scitotenv.2018.02.276
  • Salvati, A., Kolokotroni, M., Kotopouleas, A., Watkins, R., Giridharan, R., & Nikolopoulou, M. (2022). Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Building and Environment, 207, 108459. doi:10.1016/j.buildenv.2021.108459
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Fatih Canan 0000-0003-4469-1993

Hande Büşra Geyikli 0000-0003-2970-9921

Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 6 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 2

Kaynak Göster

APA Canan, F., & Geyikli, H. B. (2023). Dış Mekân Gölgeleme Elemanlarının Termal Konfor Koşullarına Etkilerinin Değerlendirilmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 684-694. https://doi.org/10.53433/yyufbed.1215174