Year 2018, Volume 18, Issue 3, Pages 1190 - 1202 2018-12-30

Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi

Cihat Özaydın [1]

3 29

Geniş bir sıcaklık aralığında (100-300 K) metal-arayüzey tabaka-yarıiletken (MIS) Schottky diyotunun elektriksel özellikleri akım-gerilimölçümleri ile incelenmiştir.MIS Schottky diyotu, 300 K ve 100 K'de sırasıyla 2.28 ve 4.13'e eşit idealite faktörleri (n) ile birlikte ideal olmayan akım-gerilim davranışı göstermiştir.Diyotun deneysel engel yüksekliği değerleri, 100 K'da 0.32 eV, 300 K'da 0.76 eV olarak belirlenmiştir. Azalan sıcaklıkla birliktedeneysel engel yüksekliğinde (BH,Φ𝑏) anormal bir azalma ve idealite faktöründebir artış gözlemlenmiştir. Gözlemlenen bu davranış, engel yüksekliği homojensizliklerine atfedilmiş ve arayüzeyde yerel engel yüksekliklerinin Gauss dağılımı olduğunu varsayılarak termiyonik emisyonmekanizması temelinde açıklanmıştır.MIS diyotunun sıcaklığa bağlı akım-gerilim karakteristikleri, sırasıyla 1.17 eV ve 0.81 eV ortalama engel yükseklikleri ile birlikte 146 mV ve 94 mV standart sapmaları verenikili Gauss dağılımı göstermiştir.İki sıcaklık bölgesi için modifiye edilmiş ln(I0/T2) -q2σs2 2k2T2'ye karşı 1/kT eğrisinden sırasıyla 200-300K sıcaklık bölgesindeΦ̅𝑏 and A∗1.18 eV ve 20.8 A/cm2K2ve 100-200K sıcaklık bölgesinde 0.82 eV ve 11.8 A/cm2K2 olarak belirlenmiştir.Ayrıca, MIS diyotunun karakterizasyonu için kapasitans-gerilim ölçümleri uygulanmıştır.C-V ölçümleri analizinden elde edilen 0.88 eV engel yüksekliği değeri, oda sıcaklığında akım-gerilim ölçümlerinden elde edilen 0.76 eV'den daha yüksek olarak elde edilmiştir.
Organometalik kompleks, MIS yapı;, Akım-Gerilim, Düşük sıcaklık, Gauss dağılımı
  • Akkiliç, K., Ocak, Y. S., Kiliçoǧlu, T., Ilhan, S., and Temel, H., 2010. Calculation of current-voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Current Applied Physics, 10(1), 337–341.
  • Altindal, Ş, Karadeniz, S., Tuğluoğlu, N., and Tataroglu, A., 2003. The role of interface states and series resistance on the I-V and C-V characteristics in Al/SnO2/p-Si Schottky diodes. In Solid-State Electronics, 47, 1847–1854.
  • Antohe, S., Tomozeiu, N., and Gogonea, S., 1991. Properties of the Organic‐on‐Inorganic Semiconductor Barrier Contact Diodes In/PTCDI/p‐Si and Ag/CuPc/p‐Si. Physica Status Solidi (a), 125(1), 397–408.
  • Attia, A. A., Saadeldin, M. M., Soliman, H. S., Gadallah, A.-S., and Sawaby, K., 2016. Structural and optical properties of p-quaterphenyl thin films and application in organic/inorganic photodiodes. Optical Materials, 62, 711–716.
  • Aydoǧan, Ş., Saǧlam, M., Türüt, A., and Onganer, Y., 2009. Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current-voltage measurements at low temperatures. Materials Science and Engineering C, 29(4), 1486–1490.
  • Ayyildiz, E., Cetin, H., and Horváth, Z. J., 2005. Temperature dependent electrical characteristics of Sn/p-Si Schottky diodes. Applied Surface Science, 252(4), 1153–1158.
  • Bohlin, K. E., 1986. Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60(3), 1223–1224.
  • Bolognesi, A., Di Carlo, A., Lugli, P., Kampen, T., and Zahn, D. R. T., 2003. Experimental investigation and simulation of hybrid organic/inorganic Schottky diodes. Journal of Physics Condensed Matter, 15(38), s2719.
  • Chand, S., and Kumar, J., 1995. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottky diodes in a wide temperature range. Semiconductor Science and Technology, 10(12), 1680–1688.
  • Chand, S., and Kumar, J., 1996. Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures. Applied Physics a-Materials Science and Processing, 63(2), 171–178.
  • Dobročka, E., and Osvald, J., 1994. Influence of barrier height distribution on the parameters of Schottky diodes. Applied Physics Letters, 65(5), 575–577.
  • Güllü, Ö. and Türüt, A., 2008. Photovoltaic and electronic properties of quercetin/p-InP solar cells. Solar Energy Materials and Solar Cells, 92(10), 1205–1210.
  • Güllü, Ö., Çankaya, M., Bariş, Ö., Biber, M., Özdemir, H., Güllüce, M., and Türüt, A., 2008. DNA-based organic-on-inorganic semiconductor Schottky structures. Applied Surface Science, 254(16), 5175–5180.
  • Gümüs, A., Türüt, A., and Yalçin, N., 2002. Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs. Journal of Applied Physics, 91(1), 245–250.
  • Gunduz, B., Yahia, I. S., and Yakuphanoglu, F., 2012. Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. In Microelectronic Engineering (Vol. 98, pp. 41–57).
  • Gupta, R. K., Ghosh, K., and Kahol, P. K., 2009. Fabrication and electrical characterization of Schottky diode based on 2-amino-4, 5-imidazoledicarbonitrile (AIDCN). Physica E: Low-Dimensional Systems and Nanostructures, 41(10), 1832–1834.
  • Hackam, R., Harrop, P., 1972. Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes. IEEE Transactions on Electron Devices 19(12), 1231 – 1238.
  • Hardikar, S., Hudait, M. K., Modak, P., Krupanidhi, S. B., and Padha, N., 1999. Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures. Applied Physics A: Materials Science and Processing, 68(1), 49–55.
  • Horváth, Z. J., 1988. Domination of the thermionic-field emission in the reverse I-V characteristics of n-type GaAs Schottky contacts. Journal of Applied Physics, 64(12), 6780–6784.
  • Horváth, Z. J., 1992. A New Approach to Temperature Dependent Ideality Factors in Schottky Contacts. MRS Proceedings, 260.
  • Huang, W. C., Lin, T. C., Horng, C. T., and Chen, C. C., 2013. Barrier heights engineering of Al/p-Si Schottky contact by a thin organic interlayer. Microelectronic Engineering, 107, 200–204.
  • Hudait, M. K., Venkateswarlu, P., and Krupanidhi, S. B., 2001. Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid-State Electronics, 45(1), 133–141.
  • Ilhan, S., 2008. Preparation and characterization of binuclear CuII complexes derived from diamines and dialdehydes. Journal of Coordination Chemistry, 61(18), 2884–2895.
  • Jones, F. E., Wood, B. P., Myers, J. a, Daniels-Hafer, C., and Lonergan, M. C., 1999. Current transport and the role of barrier inhomogeneities at the high barrier n-InP vertical bar poly(pyrrole) interface. Journal of Applied Physics, 86(1999), 6431–6441.
  • Kampen, T. U., Park, S., and Zahn, D. R. T., 2002. Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. In Applied Surface Science (Vol. 190, pp. 461–466).
  • Kampen, T., Schüller, A., Zahn, D. R. T., Biel, B., Ortega, J., Pérez, R., and Flores, F., 2004. Schottky contacts on passivated GaAs(1 0 0) surfaces: Barrier height and reactivity. In Applied Surface Science (Vol. 234, pp. 341–348).
  • Karataş, Ş., Altindal, Ş., Türüt, A., and Özmen, A., 2003. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Applied Surface Science, 217(1–4), 250–260.
  • Keffous, A., Siad, M., Mamma, S., Belkacem, Y., Lakhdar Chaouch, C., Menari, H., … Chergui, W., 2003. Effect of series resistance on the performance of high resistivity silicon Schottky diode. Applied Surface Science, 218(1–4), 336–342.
  • Mönch, W., 1999. Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 17(4), 1867
  • Neamen, D.A., 1992. Semiconductors Physics and Devices, R. R. Donnelley and Sons Company, Sydney, s326-360.
  • Norde, H., 1979. A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053
  • Osvald, J., 2003. New aspects of the temperature dependence of the current in inhomogeneous Schottky diodes. Semiconductor Science and Technology, 18 L24.
  • Osvald, J., and Horváth, Z., 2004. Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an inverse near-surface layer. Applied Surface Science, 234(1–4), 349–354.
  • Padovani, F. A., and Sumner, G. G., 1965. Experimental study of gold-gallium arsenide Schottky barriers. Journal of Applied Physics, 36(12), 3744–3747.
  • Rajesh, K. R., and Menon, C. S., 2007. Study on the device characteristics of FePc and FePcCl organic thin film Schottky diodes: Influence of oxygen and post deposition annealing. Journal of Non-Crystalline Solids, 353(4), 398–404.
  • Riedo, E., Chevrier, J., Comin, F., and Brune, H., 2001. Nanotribology of carbon based thin films: The influence of film structure and surface morphology. Surface Science, 477(1), 25–34.
  • Rhoderick, E.H., Williams, R.H., 1988. Metal–Semiconductor Contacts, 2nd ed. Clarendon Press, Oxford, s45-50.
  • Ru, G. P., Van Meirhaeghe, R. L., Forment, S., Jiang, Y. L., Qu, X. P., Zhu, S., and Li, B. Z., 2005. Voltage dependence of effective barrier height reduction in inhomogeneous Schottky diodes. Solid-State Electronics, 49(4), 606–611
  • Ruzgar, S., Caglar, Y., Ilican, S., and Caglar, M., 2017. Modification of gate dielectric on the performance of copper (II) phthalocyanine based on organic field effect transistors. Optik, 130.
  • Sahin, C., Oner, I., and Varlikli, C., 2014. Structural and optical properties of new yellow emitting iridium(III ) complexes and their application as an active layer component in white organic light-emitting diodes. RSC Adv., 4(87), 46831–46839.
  • Shirota, Y., 2000. Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry, 10, 1–25.
  • Song, Y. P., Van Meirhaeghe, R. L., Laflère, W. H., and Cardon, F., 1986. On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid State Electronics, 29(6), 633–638.
  • Sullivan, J. P., Tung, R. T., Pinto, M. R., and Graham, W. R., 1991. Electron transport of inhomogeneous Schottky barriers: A numerical study. Journal of Applied Physics, 70(12), 7403–7424.
  • Sze, S.M.,1981. Physics of Semiconductor Devices, 2nd ed. Wiley, New York, s134-191.
  • Tang, C. W., 1986. Two-layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183–185.
  • Temirci, C., Gülcan, M., Goksen, K., and Sönmez, M., 2011. Metal/semiconductor contact properties of Al/Co(II)complex compounds. Microelectronic Engineering, 88(1), 41–45.
  • Tung, R. T., 1992. Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 45(23), 13509–13523.
  • Vanalme, G. M., Goubertt, L., Van Meirhaeghe, R. L., Cardon, F., and Van Daele, P., 1999. Ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/III-V semiconductor Schottky barrier contacts by chemical pretreatments. Semiconductor Science and Technology, 14(9), 871–877.
  • Vearey-Roberts, A. R., and Evans, D. A., 2005. Modification of GaAs Schottky diodes by thin organic interlayers. Applied Physics Letters, 86(7), 1–3.
  • Werner, J. H., and Güttler, H. H., 1991. Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 69(3), 1522–1533.
  • Werner, J. H., and Güttler, H. H., 1993. Temperature dependence of Schottky barrier heights on silicon. Journal of Applied Physics, 73(3), 1315–1319.
  • Zahn, D. R. T., Kampen, T. U., and Méndez, H., 2003. Transport gap of organic semiconductors in organic modified Schottky contacts. In Applied Surface Science (Vol. 212–213, pp. 423–427).
  • Zhong, C., Wu, Q., Guo, R., and Zhang, H., 2008. Synthesis and luminescence properties of polymeric complexes of Cu(II), Zn(II) and Al(III) with functionalized polybenzimidazole containing 8-hydroxyquinoline side group. Optical Materials, 30(6), 870–875.
Primary Language tr
Journal Section Articles
Authors

Author: Cihat Özaydın

Bibtex @research article { akufemubid544755, journal = {Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi}, issn = {}, eissn = {2149-3367}, address = {Afyon Kocatepe University}, year = {2018}, volume = {18}, pages = {1190 - 1202}, doi = {}, title = {Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi}, key = {cite}, author = {Özaydın, Cihat} }
APA Özaydın, C . (2018). Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18 (3), 1190-1202. Retrieved from http://dergipark.org.tr/akufemubid/issue/44157/544755
MLA Özaydın, C . "Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 (2018): 1190-1202 <http://dergipark.org.tr/akufemubid/issue/44157/544755>
Chicago Özaydın, C . "Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 (2018): 1190-1202
RIS TY - JOUR T1 - Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi AU - Cihat Özaydın Y1 - 2018 PY - 2018 N1 - DO - T2 - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 1190 EP - 1202 VL - 18 IS - 3 SN - -2149-3367 M3 - UR - Y2 - 2018 ER -
EndNote %0 Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi %A Cihat Özaydın %T Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi %D 2018 %J Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi %P -2149-3367 %V 18 %N 3 %R %U
ISNAD Özaydın, Cihat . "Düşük Sıcaklıklarda Au/Organometalik Kompleks/n-Si MIS Yapısının Elektriksel Özelliklerinin İncelenmesi". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 18 / 3 (December 2019): 1190-1202.