Year 2018, Volume 7, Issue 2, Pages 473 - 483 2018-12-28

Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar
Enzymatic and Non-Enzymatic Antioxidants in Plants

Oğuz Ayhan KİREÇCİ [1]

48 253

Canlılar çevresel streslere karşı savunma mekanizmalarına sahiptir. Bu mekanizmalar canlıyı stres şartlarının olumsuz etkilere karşı korur. Stres cevaplarının oluşması karmaşık bir süreçtir. Canlı sistemler stres tiplerine karşı oluşturdukları yanıtların uyumuna göre hayatta kalmayı başarabilirler. Biyolojik sistemlerde stresle mücadele eden en önemli mekanizma antioksidan savunmadır. Hayvanlarda olduğu gibi bitkilerde de antioksdian savunma mevcuttur. Bitkiler gibi biyolojik stres cevaplarını aydınlığa kavuşturmak zordur.  Bitkiler; antioksidan sistemleri sayesinde çevresel stresin olumsuz etkilerine karşı mücadele edebilirler. Antioksidan sistem Süperoksit dismutaz, Katalaz, Askorbat peroksidaz, Glutatyon peroksidaz, Glutatyon redüktaz, Dehidroaskorbat redüktaz, Monodehidroaskorbat redüktaz ve Guaiakol peroksidaz gibi enzimler ile Askorbik asit, Glutatyon, α –Tokoferol, Karotenoid ve Fenolik bileşikler gibi enzimatik olmayan antioksidanlardan oluşur. Bu derlemede bitkilerde mevcut olan enzimatik ve enzimatik olmayan antioksidanlar açıklanmış ve literatüre katkı amaçlanmıştır.

Living things have defense mechanisms against environmental stresses. These mechanisms protect the organism against adverse effects of stress conditions. Stress responses are a complex process. Live systems can survive according to the compatibility of their responses to stress types. Antioxidant defense is the most important mechanism to combat stress in biological systems. As in animals, there is antioxidant defense in plants. It is difficult to clarify biological stress responses such as plants. Plants can fight against the negative effects of environmental stress through their antioxidant systems. The antioxidant system consists of enzymatic antioxidants such as Superoxide dismutase, Catalase, Ascorbate peroxidase, Glutathione peroxidase, Glutathione reductase, Dehydroaskorbate reductase, Monodehydroaskorbate reductase and Guaiacol peroxidase, as well as non-enzymatic antioxidants such as Ascorbic acid, Glutathione, α-Tocopherol, Carotenoid and Phenolic compounds. This review, plants' enzymatic and non-enzymatic antioxidants were explained and it was intended to provide contribution to literature.

  • 1. Jaleel C.A., Manivannan P., Wahid A., Farooq M., Al-Juburi H.J., Somasundaram R., Panneerselvam R. 2009. Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agricultural Biology. 11: 1.
  • 2. Gaspar T., Franck T., Bisbis B., Kevers C., Jouve L., Hausman J.F., Dommes J. 2002. Concepts in Plant Stress Physiology. Application to plant tissue cultures. Plant Growth Regulation. 37: 263–285.
  • 3. Jones H.G., Jones M.B. 1989. Introduction: some terminology and common mechanisms, in: Jones H.G., Flowers T.J., Jones M.B. (Eds.), Plants Under Stress, Cambridge university Press, Cambridge, 1–10.
  • 4. Shinozaki K., Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2): 221–22.
  • 5. Yamaguchi-Shinozaki K., Shinozaki K. 2005. Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science. 10: 88–94.
  • 6. Mahajan S., Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444(2): 139- 158.
  • 7. Jaleel C.A., Gopi R., Manivannan P., Gomathinayagam M., Murali P.V., Panneerselvam R. 2008c. Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pesticide Biochemistry and Physiology. 90(2): 135–139.
  • 8. Jaleel C.A., Manivannan P., Lakshmanan G.M.A., Gomathinayagam M., Panneerselvam R. 2008a. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerface 61(2): 298–303.
  • 9. Jaleel C.A., Manivannan P., Murali P.V., Gomathinayagam M., Panneerselvam R. 2008d. Antioxidant potential and indole alkaloid profile variations with water deficits along different parts of two varieties of Catharanthus roseus. Colloids and Surfaces B: Biointerface. 62: 312–318.
  • 10. Jaleel C.A., Sankar B., Murali P.V., Gomathinayagam M., Lakshmanan G.M.A., Panneerselvam R. 2008b. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids and Surfaces B: Biointerface 62(1): 105–111.
  • 11. Tuteja N., Ahmad P., Panda B.B., Tuteja R. 2009. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutation Reserachs. 681: 134–149.
  • 12. Ahmad P., Sarwat M., Sharma S. 2008a. Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology 51(3): 167–173.
  • 13. Bhatnagar-Mathur P., Vadez V., Sharma KK. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports. 27: 411–424.
  • 14. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7: 405–410.
  • 15. Apel K., Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55: 373–399.
  • 16. Triantaphylides C., Krischke M., Hoeberichts F.A., Ksas B., Gresser G., Havaux M., Van Breusegem F., Mueller M.J. 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology. 148: 960–968.
  • 17. Tuteja N., Sopory S.K. 2008. Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signalling and Behavior. 3: 79–86.
  • 18. Yakes F.M., Van Houten B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 94: 514–519.
  • 19. Hsu S.Y., Kao C.H. 2003. The protective effect of free radical scavengers and metal chelators on polyethylene glycol-treated leaves. Biologia Plantarum. 46: 617–619.
  • 20. McCord J.M. 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine. 108: 652–659.
  • 21. Mueller M.J. 2004. Archetype signals in plants: the phytoprostanes. Current Opinion in Plant Biology. 7: 441–448.
  • 22. Halliwell B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology. 141: 312–322.
  • 23. Wiseman H., Halliwell B. 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemistry Journal. 313 (1): 17–29.
  • 24. Jaleel C.A., Gopi R., Manivannan P., Panneerselvam R. 2008h. Exogenous application of triadimefon affects the antioxidant defense system of Withania somnifera Dunal. Pesticide Biochemistry and Physiology. 91(3): 170–174.
  • 25. Ghezzi P., Bonetto V. 2003. Redox proteomics: identification of oxidatively modified proteins. Proteomics. 3: 1145–1153.
  • 26. Palmer H.J., Paulson K.E. 1997. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutritions Reviews. 55: 353–361.
  • 27. Thannickal V.J, Fanburg B.L. 2000. Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology. 279: L1005–L1028.
  • 28. Jaleel C.A., Gopi R., Manivannan P., Gomathinayagam M., Hong-Bo S., Zhao C.X., Panneerselvam R. 2008i. Endogenous hormonal and enzymatic responses of Catharanthus roseus with triadimefon application under water deficits. Comptes Rendus Biologies. 331: 844–852.
  • 29. Scandalios J.G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medicical Biological Researchs. 38(7): 995-1014.
  • 30. Gratao P.L., Polle A., Lea P.J., Azevedo R.A. 2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology. 32(6): 481-494.
  • 31. Shi Q.H., Zhu Z.J. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environental and Experimental Botany. 63: 317–326.
  • 32. Sharma S.S., Dietz K.J. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science. 14: 43–50.
  • 33. Ashraf M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Advances. 27: 84–93.
  • 34. Nobuhiro S., Mittler R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum. 126: 45–51.
  • 35. Beyer W.F., Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2): 559-66.
  • 36. Lee Y.L., Yen M.T., Mau J.L. 2007. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chemisrty, 104(1), 1-9.
  • 37. Sarvajeet S.G, Narendra T. 2010. Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 3: 1-22.
  • 38. Jaiswal S.K, Gupta V.K, Ansari M.D., Siddiqi N.J., Sharma B. 2017. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicology Reports, 9 (4): 265-273.
  • 39. Choudhury S., Panda P., Sahoo L., Panda S.K. 2013. Reactiveoxygen species signaling in plants under abiotic stress. Plant Signaling and.Behavior 8 :e23681.
  • 40. Genestra M. 2007. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell. Signalling. 19: 1807–1819.
  • 41. Jeong J.B., Park J.H., Lee H.K., Ju S.Y., Hong S.C., Lee J.R., Chung G.Y., Lim J.H., Jeong H.J. 2009. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food and Chemical. Toxicology. 47: 525–529.
  • 42. Del Río L.A., Corpas F.J., López-Huertas E., Palma J.M. 2018. Plant Superoxide Dismutases: Function Under Abiotic Stress Conditions. In: Gupta D., Palma J., Corpas F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham.
  • 43. Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiology. 101: 7–12.
  • 44. Kim FJ, Kim HP, Hah YC, Roe JH. 1996. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Europan Journal of Biochemistry. 241: 178–185.
  • 45. Kirecci O.A. 2018. The Effects of Salt Stress, SNP, ABA, IAA and GA Applications on Antioxidant Enzyme Activities in Helianthus annuus L. Fresenius Environmental Bulletin. 27(5A): 3783-3788.
  • 46. Tuna A.L., Kaya C., Dikilitas M., Higgs D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany. 62: 1–9.
  • 47. Upadhyaya H., Panda S.K., Dutta B.K. 2008. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiologiae Plantarum. 30: 457–468.
  • 48. Bowler C., Montagu M.V., Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology. 43: 83–116.
  • 49. Ferreira R.R., Fornazier R.F., Vitoria A.P., Lea P.J., Azevedo R.A. 2002 Changes in antioxidant enzyme activities in soybean under cadmium stress, Journal of Plant Nutrion. 25: 327–342.
  • 50. Cemeli E., Baumgartner A., Anderson D. 2009. Antioxidants and the comet assay. Mutation Research. 681: 51-67.
  • 51. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 1–22.
  • 52. Akkuş İ. 1995. Serbest radikaller ve fizyopatolojik etkileri. Mimoza yayınları, Kuzucular ofset, Konya.
  • 53. Gutteridge J.M. 1995 Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry. 41: 1819-1828.
  • 54. Fattman, L.M., Schaefer, T.D. 2003 Oury. Extracellular superoxıde dısmutase ın bıology and medıcıne. Free Radical Biology and Medicine. 35(3): 236–256.
  • 55. Srivalli B., Chinnusamy V., Khanna-Chopra R. 2003 Antioxidant defense in response to abiotic stresses in plants. Journal of Plant Biology. 30: 121–139.
  • 56. Ben-Amor N., Hamed K.B., Debez A., Grignon C., Abdelly C. 2005. Physiological and antioxidant response of the perennial halophytes Crithmum maritimum to salinity. Plant Science. 168: 889–899.
  • 57. Willekens H., Villarroel R., Van Montagu M., Inzé D., Van Camp W. 1994. Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Letters. 352: 79–83.
  • 58. Van Breusegem F., Vranova E., Dat .JF., Inzé D. 2001. The role of active oxygen species in plant signal transduction. Plant Science. 161: 405–414.
  • 59. Sekmen A.H., Türkan I., Takio S. 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum. 131: 399–411.
  • 60. Vital S.A., Fowler R.W., Virgen A., Gossett D.R., Banks S.W., Rodriguez J. 2008. Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany. 62: 60–68.
  • 61. Zhang Y., Yang J., Lu S., Cai J., Guo Z. 2008. Overexpressing SgNCED1 in tobacco increases aba level, antioxidant enzyme activities, and stress tolerance. Journal of Plant Growth and Regulation. 27: 151–158.
  • 62. Yu Q., Osborne L.D., Renge Z. 1999. Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Annals of Botany. 84: 543–547.
  • 63. Dixon D.P,. Cummins L., Cole D.J., Edwards R. 1998. Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology. 1: 258–266.
  • 64. Ledford H.K., Chin B.L., Niyogi K.K. 2007. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryotic Cell. 6: 919–930.
  • 65. Blokhina O., Virolainen E., Fagerstedt., K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 91(2):179-194.
  • 66. Kangasjarvi S., Lepistö A., Hännikäinen K., Piippo M., Luomala E.M., Aro E.M., Rintamäki E. 2008. Diverse roles for chloroplast stromal and thylakoidbound ascorbate peroxidases in plant stress responses. Biochemistry Journal. 412: 275–285.
  • 67. Noctor G, Foyer C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology. 49: 249–279.
  • 68. Miyake C., Asada K. 1992. Thalakoid bound ascorbate peroxidase in Spinach chloroplasts and photoregeneration of its primary oxidation product monodehydroascorbate radicals in thalakoids. Plant Cell Physiology. 33: 541–553.
  • 69. Miyake C.., Cao WH., Asada K. 1993. Purification and molecular properties of ascorbate bound peroxidase in spinach chloroplasts. Plant Cell Physiology. 34: 881–889.
  • 70. Rosa S.B., Caverzan A., Teixeira F.K., Lazzarotto F., Silveira J.A.G., Ferreira-Silva S.L., Abreu-Neto J., Margis R., Margis-Pinheiro M. 2010. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry. 71(5-6):548-558.
  • 71. Caverzan A., Bonifacio A., Carvalho F.E.L., Andrade C.M.B., Passaia G., Schünemann M., Maraschin F.S., Martins M.O., Teixeira F.K., Rauber R., Margis R., Silveira J.A.G., Margis- Pinheiro M. 2010. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Phytochemistry. 1(5-6): 548-558.
  • 72. Caverzan A., Passaia G., Rosa S.B., Ribeiro C.W., Lazzarotto F., Margis-Pinheiro M. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology. 35(4): 1011-1019.
  • 73. Dalal M., Khanna-Chopra R. 2001. Differential response of antioxidant enzymes in leaves of necrotic wheat hybrids and their parents. Physiologia Plantarum. 111: 297–304.
  • 74. Sudhakar C., Lakshmi A., Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science. 16: 613–619.
  • 75. Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T., Shibahara T., Inanaga S., Tanaka K. 2007. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta. 225: 1255–1264.
  • 76. Chen Z., Gallie D.R. 2006. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiology. 142: 775–787.
  • 77. Anjum N.A., Gill S.S., Gill R., Hasanuzzaman M., Duarte A.C., Pereira E., Ahmad I., Tuteja R., Tuteja N. 2014. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma. 251(5): 1265-1283
  • 78. Jimenez A., Hernandez J.A., del Rio L.A., Sevilla F. 1997. Evidence for the presence of the ascorbate- glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology.114(1): 275-284.
  • 79. Leterrier M., Corpas F.J., Barroso J.B., Sandalio L.M., del Rıo L.A. 2005. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiology. 138(4): 2111-2123. 80. Asada K. 1999. The water-water cycle in chloroplasts: scavening of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 601-639.
  • 81. Horemans N., Foyer C.H., Asard H. 2000. Transport and action of ascorbate at the plant plasma membrane. Trends in Plant Science. 5: 263–267.
  • 82. Smirnoff N. 2000. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist. 125: 27–58.
  • 83. Smirnoff N. 2011. Vitamin C: the metabolism and functions of ascorbic acid in plants. Advances in Botanical Research. In: Rebeille F, Douce R, editors. Biosynthesis of Vitamins in Plants: Vitamins B6, B8, B9, C, E, K, Part 2. 1st edn. USA: Academic Press; 107-177.
  • 84. Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environment. 28: 1056–1071.
  • 85. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 1-26.
  • 86. Wu Y.S., Tang K.X. 2004. MAP Kinase cascades responding to environmental stress in plants. Acta Botanica Sinica. 46: 127–136.
  • 87. Hare P.D., Cress W.A., Staden J.V. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment. 21: 535–553.
  • 88. Igamberdiev A.U., Hill R.D. 2004. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimenthal Botany. 55: 2473–2482.
  • 89. Noctor G. 2006. Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environment. 29: 409–425.
  • 90. Kruk J., Holländer-Czytko H., Oettmeier W., Trebst A. 2005. Tocopherol as singlet oxygen scavenger in photosystem II. Journal of Plant Physiology. 162: 749–757.
  • 91. Boo Y.C., Jung J. 1999. Water deficit induced oxidative stress and antioxidative defenses in rice plants. Journal of Plant Physiology. 51: 255–261.
  • 92. Shao H.B., Chu L.Y., Wu G., Zhang J.H., Lu Z.H., Hu Y.C. 2007. Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum) genotypes at tillering stage. Biointerfaces. 59: 113–119.
  • 93. Shao H.B, Chen X.Y., Chu L.Y., Zhao X.N., Wu G., Yuan Y.B., Zhao C.X., Hu Z.M. 2006. Investigation on the relationship of Proline with wheat anti-drought under soil water deficits. Biointerfaces. 53: 113–119.
  • 94. Wu G., Wei Z.K., Shao H.B. 2007. The mutual responses of higher plants to environment: physiological and microbiological aspects. Biointerfaces. 59: 113–119.
  • 95. Millar A.H., Mittova V., Kiddle G., Heazlewood J.L., Bartoli C.G., Theodoulou F.L., Foyer C.H. 2003. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology. 133: 443–447.
  • 96. Noctor G., Gomez L., Vanacker H., Foyer C.H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Jourbal of Experimenthal Botany. 53: 1283–1304.
  • 97. Ahmad P.,, Cheruth A.J., Mohamed A.S, Gowher N., Satyawati S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology. 30(3): 161–175.
  • 98. Schroeter H., Boyd C., Spencer J.P., Williams R.J., Cadenas E., Rice-Evans C. 2002. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiology of Aging. 23: 861–880.
  • 99. Rice-Evans C.A., Miller N.J., Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science. 2: 152–159.
Primary Language tr
Journal Section Derleme Makale
Authors

Orcid: 0000-0003-2205-4758
Author: Oğuz Ayhan KİREÇCİ (Primary Author)
Country: Turkey


Bibtex @review { bitlisfen463251, journal = {Bitlis Eren Üniversitesi Fen Bilimleri Dergisi}, issn = {2147-3129}, eissn = {2147-3188}, address = {Bitlis Eren University}, year = {2018}, volume = {7}, pages = {473 - 483}, doi = {10.17798/bitlisfen.463251}, title = {Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar}, key = {cite}, author = {KİREÇCİ, Oğuz Ayhan} }
APA KİREÇCİ, O . (2018). Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7 (2), 473-483. DOI: 10.17798/bitlisfen.463251
MLA KİREÇCİ, O . "Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7 (2018): 473-483 <http://dergipark.org.tr/bitlisfen/issue/41777/463251>
Chicago KİREÇCİ, O . "Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7 (2018): 473-483
RIS TY - JOUR T1 - Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar AU - Oğuz Ayhan KİREÇCİ Y1 - 2018 PY - 2018 N1 - doi: 10.17798/bitlisfen.463251 DO - 10.17798/bitlisfen.463251 T2 - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 473 EP - 483 VL - 7 IS - 2 SN - 2147-3129-2147-3188 M3 - doi: 10.17798/bitlisfen.463251 UR - https://doi.org/10.17798/bitlisfen.463251 Y2 - 2018 ER -
EndNote %0 Bitlis Eren Üniversitesi Fen Bilimleri Dergisi Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar %A Oğuz Ayhan KİREÇCİ %T Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar %D 2018 %J Bitlis Eren Üniversitesi Fen Bilimleri Dergisi %P 2147-3129-2147-3188 %V 7 %N 2 %R doi: 10.17798/bitlisfen.463251 %U 10.17798/bitlisfen.463251
ISNAD KİREÇCİ, Oğuz Ayhan . "Bitkilerde Enzimatik ve Enzimatik Olmayan Antioksidanlar". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7 / 2 (December 2018): 473-483. https://doi.org/10.17798/bitlisfen.463251