Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of MWCNT Ratio on Microstructure and Mechanical Properties of MWCNT Reinforced Al2O3 Matrix Nanocomposites

Yıl 2019, Cilt: 7 Sayı: 3, 1922 - 1930, 31.07.2019
https://doi.org/10.29130/dubited.571504

Öz

In this study, multi
walled carbon nanotube (MWCNT) reinforced alumina (Al2O3) ceramic matrix
nanocomposites containing MWCNT from 0.0 wt.% to 15.0 wt. % have been
successfully produced. Nano size (80 nm) Al2O3 powders and MWCNT’s have mixed
with high velocity planetary ball milling and then green compacted and sintered
at 1600 oC for 120 min in flowing Argonne atmosphere.  Microstructure of produced nano composites
have investigated with scanning electron microscope (SEM) from fracture
surfaces. Effect of MWCNT addition on crystal structure were investigated via
X-ray diffractometer (XRD). Microhardness test was carried out for determine
mechanical properties of ceramic matrix nano composite mechanical properties.
Vickers indenter test method was used for determining fracture toughness
properties. MWCNT addition was significantly increased fracture toughness of Al2O3
based structure. % 2.5 wt. % MWCNT addition was increased 182.5 wt. % fracture
toughness when the compering unreinforced Al2O3 structure. 

Kaynakça

  • [1] S. Maensiri, P. Laokul, J. Klinkaewnarong, and V. Amornkitbamrung, “Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties,” Materials Science and Engineering: A, vol. 447, no. 1–2, pp. 44–50, Feb. 2007.
  • [2] I. Ahmad et al., “Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations,” Composites Science and Technology, vol. 70, no. 8, pp. 1199–1206, Aug. 2010.
  • [3] M. Michálek, M. Kašiarová, M. Michálková, and D. Galusek, “Mechanical and functional properties of Al2O3–ZrO2–MWCNTs nanocomposites,” Journal of the European Ceramic Society, vol. 34, no. 14, pp. 3329–3337, Nov. 2014.
  • [4] G.-D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites,” Nature Materials, vol. 2, no. 1, pp. 38–42, Jan. 2003.
  • [5] S. C. Zhang, W. G. Fahrenholtz, G. E. Hilmas, and E. J. Yadlowsky, “Pressureless sintering of carbon nanotube–Al2O3 composites,” Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1373–1380, Apr. 2010.
  • [6] T. Wei, Z. Fan, G. Luo, and F. Wei, “A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness,” Materials Letters, vol. 62, no. 4–5, pp. 641–644, Feb. 2008.
  • [7] K. T. Kashyap and R. G. Patil, “On Young’s modulus of multi-walled carbon nanotubes,” Bulletin of Materials Science, vol. 31, no. 2, pp. 185–187, Apr. 2008.
  • [8] A. Peigney, C. Laurent, E. Flahaut, and A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, vol. 26, no. 6, pp. 677–683, Jul. 2000.
  • [9] E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, and A. Rousset, “Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties,” Acta Materialia, vol. 48, no. 14, pp. 3803–3812, Sep. 2000.
  • [10] A. Peigney, C. Laurent, O. Dumortier, and A. Rousset, “Carbon Nanotubes±Fe±Alumina Nanocomposites. Part I: In¯uence of the Fe Content on the Synthesis of Powders,” p. 10.
  • [11] Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Progress in Polymer Science, vol. 36, no. 7, pp. 914–944, Jul. 2011.
  • [12] L. Shi, C. F. Sun, P. Gao, F. Zhou, and W. M. Liu, “Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings,” Surface and Coatings Technology, vol. 200, no. 16–17, pp. 4870–4875, Apr. 2006.
  • [13] R. Karslioglu and H. Akbulut, “Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition,” Applied Surface Science, vol. 353, pp. 615–627, Oct. 2015.
  • [14] S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, and S. H. Hong, “Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process,” Scripta Materialia, vol. 53, no. 7, pp. 793–797, Oct. 2005.
  • [15] S.-Y. Lee, J.-I. Kim, and S.-J. Park, “Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes,” Energy, vol. 78, pp. 298–303, Dec. 2014.
  • [16] V. Puchy, P. Hvizdos, J. Dusza, F. Kovac, F. Inam, and M. J. Reece, “Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures,” Ceramics International, vol. 39, no. 5, pp. 5821–5826, Jul. 2013.
  • [17] S. Maensiri, P. Laokul, J. Klinkaewnarong, and V. Amornkitbamrung, “Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties,” Materials Science and Engineering: A, vol. 447, no. 1–2, pp. 44–50, Feb. 2007.
  • [18] G.-D. Zhan and A. K. Mukherjee, “Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties,” International Journal of Applied Ceramic Technology, vol. 1, no. 2, pp. 161–171, 2004.
  • [19] M. R. Gallas, Y. C. Chu, and G. J. Piermarini, “Calibration of the Raman effect in α–Al 2 O 3 ceramic for residual stress measurements,” Journal of Materials Research, vol. 10, no. 11, pp. 2817–2822, Nov. 1995.
  • [20] E. D. Dikio, N. D. Shooto, F. T. Thema and A. M. Farah “Raman and TGA Study of Carbon Nanotubes Synthesized Over Mo/Fe Catalyst on Aluminium Oxide, Calcium Carbonate and Magnesium Oxide Support,” Chemical Science Transactions, vol. 2, no. 4, Oct. 2013.

MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi

Yıl 2019, Cilt: 7 Sayı: 3, 1922 - 1930, 31.07.2019
https://doi.org/10.29130/dubited.571504

Öz

Bu çalışmada, ağırlıkça %0,0 dan %15,0’e
kadar farklı oranlarda aktive edilmiş çok duvarlı karbon nanotüp (MWCNT)
takviyeli ve alümina Al2O3 matrislinanokompozitler
başarılı bir şekilde üretilmiştir. Nano boyuttaki (80 nm) Al2O3
tozları ve MWCNT’ler yüksek hızlı gezegensel bilyeli değirmende
karıştırılmış, ardından soğuk şekillendirilmiş ve 1600o C’de argon
atmosferinde 120 dakika süre ile sinterlenmiştir. Üretilen nanokompozitlerin
mikroyapıları taramalı elektron mikroskobu (SEM) kullanılarak kırık yüzeylerden
incelenmiştir. MWCNT ilavesinin kristal yapı ve üzerindeki etkisi X-ışınları
difraktometresi (XRD) kullanılarak ortaya çıkarılmıştır. Mekanik özellikleri
vickers mikrosertlik yöntemi kullanılarak belirlenmiştir. Kırılma toklukları
ise vickers indenter metodu kullanılarak incelenmiştir. Yapılan kırılma tokluğu
deneyleri sonucunda MWCNT ilavesi Al2O3 esaslı seramik
malzemenin kırılma tokluğunu belirgin bir şekilde artırdığı görülmüştür. %2,5
MWCNT ilavesi seramik matrisli nanokompozit yapının kırılma tokluğunu katkısız
Al2O3 ile kıyaslandığında %182,5 oranında artırmıştır
.

Kaynakça

  • [1] S. Maensiri, P. Laokul, J. Klinkaewnarong, and V. Amornkitbamrung, “Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties,” Materials Science and Engineering: A, vol. 447, no. 1–2, pp. 44–50, Feb. 2007.
  • [2] I. Ahmad et al., “Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations,” Composites Science and Technology, vol. 70, no. 8, pp. 1199–1206, Aug. 2010.
  • [3] M. Michálek, M. Kašiarová, M. Michálková, and D. Galusek, “Mechanical and functional properties of Al2O3–ZrO2–MWCNTs nanocomposites,” Journal of the European Ceramic Society, vol. 34, no. 14, pp. 3329–3337, Nov. 2014.
  • [4] G.-D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites,” Nature Materials, vol. 2, no. 1, pp. 38–42, Jan. 2003.
  • [5] S. C. Zhang, W. G. Fahrenholtz, G. E. Hilmas, and E. J. Yadlowsky, “Pressureless sintering of carbon nanotube–Al2O3 composites,” Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1373–1380, Apr. 2010.
  • [6] T. Wei, Z. Fan, G. Luo, and F. Wei, “A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness,” Materials Letters, vol. 62, no. 4–5, pp. 641–644, Feb. 2008.
  • [7] K. T. Kashyap and R. G. Patil, “On Young’s modulus of multi-walled carbon nanotubes,” Bulletin of Materials Science, vol. 31, no. 2, pp. 185–187, Apr. 2008.
  • [8] A. Peigney, C. Laurent, E. Flahaut, and A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, vol. 26, no. 6, pp. 677–683, Jul. 2000.
  • [9] E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, and A. Rousset, “Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties,” Acta Materialia, vol. 48, no. 14, pp. 3803–3812, Sep. 2000.
  • [10] A. Peigney, C. Laurent, O. Dumortier, and A. Rousset, “Carbon Nanotubes±Fe±Alumina Nanocomposites. Part I: In¯uence of the Fe Content on the Synthesis of Powders,” p. 10.
  • [11] Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,” Progress in Polymer Science, vol. 36, no. 7, pp. 914–944, Jul. 2011.
  • [12] L. Shi, C. F. Sun, P. Gao, F. Zhou, and W. M. Liu, “Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings,” Surface and Coatings Technology, vol. 200, no. 16–17, pp. 4870–4875, Apr. 2006.
  • [13] R. Karslioglu and H. Akbulut, “Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition,” Applied Surface Science, vol. 353, pp. 615–627, Oct. 2015.
  • [14] S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, and S. H. Hong, “Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process,” Scripta Materialia, vol. 53, no. 7, pp. 793–797, Oct. 2005.
  • [15] S.-Y. Lee, J.-I. Kim, and S.-J. Park, “Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes,” Energy, vol. 78, pp. 298–303, Dec. 2014.
  • [16] V. Puchy, P. Hvizdos, J. Dusza, F. Kovac, F. Inam, and M. J. Reece, “Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures,” Ceramics International, vol. 39, no. 5, pp. 5821–5826, Jul. 2013.
  • [17] S. Maensiri, P. Laokul, J. Klinkaewnarong, and V. Amornkitbamrung, “Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties,” Materials Science and Engineering: A, vol. 447, no. 1–2, pp. 44–50, Feb. 2007.
  • [18] G.-D. Zhan and A. K. Mukherjee, “Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties,” International Journal of Applied Ceramic Technology, vol. 1, no. 2, pp. 161–171, 2004.
  • [19] M. R. Gallas, Y. C. Chu, and G. J. Piermarini, “Calibration of the Raman effect in α–Al 2 O 3 ceramic for residual stress measurements,” Journal of Materials Research, vol. 10, no. 11, pp. 2817–2822, Nov. 1995.
  • [20] E. D. Dikio, N. D. Shooto, F. T. Thema and A. M. Farah “Raman and TGA Study of Carbon Nanotubes Synthesized Over Mo/Fe Catalyst on Aluminium Oxide, Calcium Carbonate and Magnesium Oxide Support,” Chemical Science Transactions, vol. 2, no. 4, Oct. 2013.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ramazan Karslıoğlu 0000-0001-5490-3449

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Karslıoğlu, R. (2019). MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(3), 1922-1930. https://doi.org/10.29130/dubited.571504
AMA Karslıoğlu R. MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi. DÜBİTED. Temmuz 2019;7(3):1922-1930. doi:10.29130/dubited.571504
Chicago Karslıoğlu, Ramazan. “MWCNT Oranının MWCNT Ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 3 (Temmuz 2019): 1922-30. https://doi.org/10.29130/dubited.571504.
EndNote Karslıoğlu R (01 Temmuz 2019) MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 3 1922–1930.
IEEE R. Karslıoğlu, “MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi”, DÜBİTED, c. 7, sy. 3, ss. 1922–1930, 2019, doi: 10.29130/dubited.571504.
ISNAD Karslıoğlu, Ramazan. “MWCNT Oranının MWCNT Ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/3 (Temmuz 2019), 1922-1930. https://doi.org/10.29130/dubited.571504.
JAMA Karslıoğlu R. MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi. DÜBİTED. 2019;7:1922–1930.
MLA Karslıoğlu, Ramazan. “MWCNT Oranının MWCNT Ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı Ve Mekanik Özelliklerine Etkisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 3, 2019, ss. 1922-30, doi:10.29130/dubited.571504.
Vancouver Karslıoğlu R. MWCNT Oranının MWCNT ile güçlendirilmiş Al2O3 Matrisli Nanokompozitlerin Mikroyapı ve Mekanik Özelliklerine Etkisi. DÜBİTED. 2019;7(3):1922-30.