Research Article
BibTex RIS Cite

Difenhidramin’in in vitro Parkinson modelinde nöroprotektif ve terapötik etkilerinin belirlenmesi

Year 2024, Volume: 13 Issue: 3, 116 - 122
https://doi.org/10.47493/abantmedj.1584839

Abstract

Amaç: Parkinson hastalığı (PH), nörodejeneratif hastalıklardan biri olup dopaminerjik nöronların ilerleyici kaybı ile karakterize edilmektedir. PH’nın yaygınlığının artması nedeniyle nöroprotektif tedavilere olan ihtiyaç artmakta ve bu tedaviler hastalığın ilerlemesini yavaşlatmak amacıyla araştırılmaktadır. Difenhidramin (DFH), histamin 1 reseptör antagonisti olarak etki göstermekte ve kan-beyin bariyerini geçerek merkezi sinir sistemi üzerinde etkili olmaktadır. Çalışmamızda, 6-hidroksidopamin (6-OHDA) ile oluşturulan in vitro PH modelinde, DFH’nin nöroprotektif ve tedavi edici etkilerini değerlendirmeyi amaçladık.
Gereç ve Yöntemler: Glioblastoma (U-118MG) hücrelerinde 6-OHDA ile in vitro PH modeli oluşturuldu. 6-OHDA uygulamasından önce ve sonra 3 farklı konsantrasyonda DFH uygulandı. DFH’nin koruyucu etkisi için hücre canlılığı, XTT hücre proliferasyon testi kullanılarak incelendi. Sonuçlar, istatiksel analiz yöntemleri ile değerlendirildi.
Bulgular: Çalışmamızda, DFH’nin doz kontrollü uygulamasının, U-118MG hücre hattında 6-OHDA ile oluşturulan in vitro Parkinson modeli üzerinde hem nöroprotektif hem de terapötik etkileri olduğunu göstermiştir. Çalışmamız sonucunda elde ettiğimiz bulgulara göre; DFH’nin 1, 10 ve 100 μM konsantrasyonlarda, 6-OHDA kontrol grubuna kıyasla, hücre canlılığını önemli ölçüde artırdığı bulunmuştur. DFH’nin 1 ve 10 μM konsantrasyonları, terapötik ve nöroprotektif kullanım için önemli bir etki göstermektedir.
Sonuç: Yapılan in vitro çalışma DFH’nin, PH modellenmiş U-118MG nöronal hücrelerin canlılığını arttırarak hücreler üzerinde nöroprotektif ve tedavi edici etkilere sahip olduğunu göstermektedir. Bunun yanında, DFH’nin PH hayvan modelleri üzerindeki etkilerini değerlendirmek için in vivo çalışmalar gereklidir.

References

  • Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008;1147:37-52.
  • Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 2021;20(5):385-397.
  • Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al., Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015-22.
  • Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, et al. Parkinson's Disease: A review from pathophysiology to rreatment. Mini Rev Med Chem. 2020;20(9):754-767.
  • Opara J, Małecki A, Małecka E, Socha T. Motor assessment in Parkinson's disease. Ann Agric Environ Med. 2017;24(3):411-415.
  • Lloyd KG, Möhler H, Heitz P, Bartholini G. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients. J Neurochem. 1975;25(6):789-95.
  • Coelho MH, Silva IJ, Azevedo MS, Manso CF. Decrease in blood histamine in drug-treated parkinsonian patients. Mol Chem Neuropathol. 1991;14(2):77-85.
  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Research. 1983;275(2):321-328.
  • Ehringer H, Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960;38:1236-9.
  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B. On the presence of 3-hydroxytyramine in brain. Science. 1958;127(3296):471.
  • Schwab RS, Amador LV, Lettvin JY, Apomorphine in Parkinson's disease. Trans Am Neurol Assoc. 1951;56:251-3.
  • Budnitz J. The use of benadryl in Parkinson's disease; a preliminary report of eight cases. N Engl J Med. 1948;238(25):874.
  • Schwab RS, England Jr AC, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson's disease. Jama. 1969;208(7):1168-70.
  • Kopin IJ. The pharmacology of Parkinson's disease therapy: an update. Annu Rev Pharmacol Toxicol. 1993;33: 467-95.
  • Jenner P. Treatment of the later stages of Parkinson's disease - pharmacological approaches now and in the future. Transl Neurodegener. 2015;4:3.
  • Kim YS, Kim YB, Kim WB, Yoon BE, Shen FY, Lee SW, et al. Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R-CaV 1.3-RyR pathway in the mouse. Eur J Neurosci. 2015;42(7):2467-77.
  • Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther, 2017;175:116-132.
  • Falkenstein M, Elek M, Stark H. Chemical probes for Histamine receptor subtypes. Curr Top Behav Neurosci. 2022;59:29-76.
  • Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, et al. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. Prog Brain Res. 2021;266:1-73.
  • Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res. 2016;312:415-30.
  • Church MK, Church DS. Pharmacology of antihistamines. Indian J Dermatol. 2013;58(3):219-24.
  • Lieberman P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc. 2009;30(5):482-6.
  • Pan W, Cao Z, Liu D, Jiao Y. Protective effect of Diphenhydramine against traumatic brain injury in rats via modulation of oxidative stress and inflammation. Pharmacology. 2020;05(1-2):47-53.
  • Köppel C, Ibe K, Tenczer J. Clinical symptomatology of diphenhydramine overdose: an evaluation of 136 cases in 1982 to 1985. J Toxicol Clin Toxicol. 1987;25(1-2):53-70.
  • Nicholson AN. Antihistamines and sedation. Lancet. 1983;2(8343):211-2.
  • Gengo F, Gabos C, Miller JK. The pharmacodynamics of diphenhydramine-induced drowsiness and changes in mental performance. Clin Pharmacol Ther. 1989;45(1):15-21.
  • Demetropoulos S, Schauben JL. Acute dystonic reactions from "street Valium". J Emerg Med. 1987;5(4):293-7.
  • Elliott ES, Marken PA, Ruehter VL. Clozapine-associated extrapyramidal reaction. Ann Pharmacother. 2000;34(5):615-8.
  • Pranzatelli MR, Mott SH, Pavlakis SG, Conry JA, Tate ED. Clinical spectrum of secondary parkinsonism in childhood: a reversible disorder. Pediatr Neurol. 1994;10(2):131-40.
  • Scotti G. Treatment of Parkinson's syndrome with L-dopa associated with diphenhydramine hydrochloride and amantadine hydrochloride. Sist Nerv. 1970;22(2):144-52.
  • Nicholson G, Pereira AC, Hall GM. Parkinson's disease and anaesthesia. Br J Anaesth. 2002;89(6):904-16.
  • Okura T, Higuchi K, Kitamura A, Deguchi Y. Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3. Biol Pharm Bull. 2014;37(2):286-91.
  • Kim J, Song JH. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells. Eur J Pharmacol. 2017; 798:122-128.
  • Kurt AH, Oztabag CK, Sevinc UZ, Kalfa I. Exploring the protective and therapeutic effects of Spinorfin in an in vitro Parkinson's model. Istanbul Medipol University 11th Cellular Neuroscience Days. 2024.
  • Dinc E, Ayaz L, Kurt AH. Protective effect of combined caffeic acid phenethyl ester and bevacizumab against hydrogen peroxide-induced oxidative stress in human RPE Cells. Curr Eye Res. 2017;42(12):1659-1666.
  • Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis 2019;9:501–515.
  • Schüle B, Pera RAR., Langston, JW. Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochimica et Biophysica Acta, 2009;1043–1051.
  • Altunlu Ö, Topatan E, Al-yaqoobi Z, Burul F, Bayram C, Sezen S, Ferah Okkay I, Okkay U, Hacimuftuoglu A. Experimental Models in Parkinson's Disease: Advantages and Disadvantages. Ağrı Med J. 2024;2(2): 80-87.
  • Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro. 2019;60:400-411.
  • Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, Kalimo H, et al. Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy. J Neurochem. 2002;81(5): 954-60.
  • Anichtchik OV, Peitsaro N, Rinne JO, Kalimo H, Panula P. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson's disease. Neurobiol Dis. 2001;8(4):707-16.
  • Anichtchik OV, Rinne JO, Kalimo H, Panula P. An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Exp Neurol. 2000;163(1):20-30.
  • LeWitt, P.A., Hong, L. & Moehle, M.S. Anticholinergic drugs for parkinsonism and other movement disorders. J Neural Transm. 2024.
  • Gonzalez F. Diphenhydramine may be useful as a palliative treatment for patients dying with Parkinson's disease and tremors: a case report and discussion. Am J Hosp Palliat Care. 2009;26(6):474-5.
  • Lin TK, Man MQ, Santiago JL, et al. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol. 2013;133(2): 469-478.
  • Or CR, Su HL, Lee WC, Yang SY, Ho C, Chang CC. Diphenhydramine induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling and retards B16-F10 melanoma growth in vivo. Oncol Rep. 2016 36(6):3465-3471.

Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model

Year 2024, Volume: 13 Issue: 3, 116 - 122
https://doi.org/10.47493/abantmedj.1584839

Abstract

Objective: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons. Due to the rising prevalence of PD, the need for neuroprotective treatments is increasing, and these are being investigated as a means to slow the disease’s progression. Diphenhydramine (DPH), acting as a histamine 1 receptor antagonist, crosses the blood-brain barrier and exerts effects on the central nervous system. Our aim in this study is to evaluate the neuroprotective and therapeutic effects of DPH in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA).
Materials and Methods: An in vitro PD model was established in Glioblastoma (U-118 MG) cells using 6-OHDA. DPH was applied at three different concentrations before and after 6-OHDA application. The protective effect of DPH was evaluated by assessing cell viability using the XTT cell proliferation assay. The results were analyzed using statistical analysis methods.
Results: Our study demonstrated that dose-controlled administration of DPH has both neuroprotective and therapeutic effects on an in vitro Parkinson’s model established with 6-OHDA in the U-118MG cell line. According to our findings, DPH at concentrations of 1, 10, and 100 µM significantly increased cell viability compared to the 6-OHDA control group. DPH at 1 and 10 µM concentrations showed important potential for therapeutic and neuroprotective use.
Conclusions: The in vitro study indicates that DPH has neuroprotective and therapeutic effects on PD-modeled U-118MG neuronal cells by increasing cell viability. Nevertheless, in vivo studies are needed to evaluate the effects of DPH on animal models of PD.

Ethical Statement

This article does not contain any studies involving animals or human participants performed by any of the authors. Cell culture was used in the study.

Supporting Institution

Supported by TÜBİTAK-2209A for Ahmet Çağrı AĞARI (Project number: 1919B012302698).

Thanks

We thank to TUBİTAK 2209-A programme for the financial support.

References

  • Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008;1147:37-52.
  • Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 2021;20(5):385-397.
  • Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al., Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015-22.
  • Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, et al. Parkinson's Disease: A review from pathophysiology to rreatment. Mini Rev Med Chem. 2020;20(9):754-767.
  • Opara J, Małecki A, Małecka E, Socha T. Motor assessment in Parkinson's disease. Ann Agric Environ Med. 2017;24(3):411-415.
  • Lloyd KG, Möhler H, Heitz P, Bartholini G. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients. J Neurochem. 1975;25(6):789-95.
  • Coelho MH, Silva IJ, Azevedo MS, Manso CF. Decrease in blood histamine in drug-treated parkinsonian patients. Mol Chem Neuropathol. 1991;14(2):77-85.
  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Research. 1983;275(2):321-328.
  • Ehringer H, Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960;38:1236-9.
  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B. On the presence of 3-hydroxytyramine in brain. Science. 1958;127(3296):471.
  • Schwab RS, Amador LV, Lettvin JY, Apomorphine in Parkinson's disease. Trans Am Neurol Assoc. 1951;56:251-3.
  • Budnitz J. The use of benadryl in Parkinson's disease; a preliminary report of eight cases. N Engl J Med. 1948;238(25):874.
  • Schwab RS, England Jr AC, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson's disease. Jama. 1969;208(7):1168-70.
  • Kopin IJ. The pharmacology of Parkinson's disease therapy: an update. Annu Rev Pharmacol Toxicol. 1993;33: 467-95.
  • Jenner P. Treatment of the later stages of Parkinson's disease - pharmacological approaches now and in the future. Transl Neurodegener. 2015;4:3.
  • Kim YS, Kim YB, Kim WB, Yoon BE, Shen FY, Lee SW, et al. Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R-CaV 1.3-RyR pathway in the mouse. Eur J Neurosci. 2015;42(7):2467-77.
  • Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther, 2017;175:116-132.
  • Falkenstein M, Elek M, Stark H. Chemical probes for Histamine receptor subtypes. Curr Top Behav Neurosci. 2022;59:29-76.
  • Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, et al. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. Prog Brain Res. 2021;266:1-73.
  • Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res. 2016;312:415-30.
  • Church MK, Church DS. Pharmacology of antihistamines. Indian J Dermatol. 2013;58(3):219-24.
  • Lieberman P. Histamine, antihistamines, and the central nervous system. Allergy Asthma Proc. 2009;30(5):482-6.
  • Pan W, Cao Z, Liu D, Jiao Y. Protective effect of Diphenhydramine against traumatic brain injury in rats via modulation of oxidative stress and inflammation. Pharmacology. 2020;05(1-2):47-53.
  • Köppel C, Ibe K, Tenczer J. Clinical symptomatology of diphenhydramine overdose: an evaluation of 136 cases in 1982 to 1985. J Toxicol Clin Toxicol. 1987;25(1-2):53-70.
  • Nicholson AN. Antihistamines and sedation. Lancet. 1983;2(8343):211-2.
  • Gengo F, Gabos C, Miller JK. The pharmacodynamics of diphenhydramine-induced drowsiness and changes in mental performance. Clin Pharmacol Ther. 1989;45(1):15-21.
  • Demetropoulos S, Schauben JL. Acute dystonic reactions from "street Valium". J Emerg Med. 1987;5(4):293-7.
  • Elliott ES, Marken PA, Ruehter VL. Clozapine-associated extrapyramidal reaction. Ann Pharmacother. 2000;34(5):615-8.
  • Pranzatelli MR, Mott SH, Pavlakis SG, Conry JA, Tate ED. Clinical spectrum of secondary parkinsonism in childhood: a reversible disorder. Pediatr Neurol. 1994;10(2):131-40.
  • Scotti G. Treatment of Parkinson's syndrome with L-dopa associated with diphenhydramine hydrochloride and amantadine hydrochloride. Sist Nerv. 1970;22(2):144-52.
  • Nicholson G, Pereira AC, Hall GM. Parkinson's disease and anaesthesia. Br J Anaesth. 2002;89(6):904-16.
  • Okura T, Higuchi K, Kitamura A, Deguchi Y. Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3. Biol Pharm Bull. 2014;37(2):286-91.
  • Kim J, Song JH. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells. Eur J Pharmacol. 2017; 798:122-128.
  • Kurt AH, Oztabag CK, Sevinc UZ, Kalfa I. Exploring the protective and therapeutic effects of Spinorfin in an in vitro Parkinson's model. Istanbul Medipol University 11th Cellular Neuroscience Days. 2024.
  • Dinc E, Ayaz L, Kurt AH. Protective effect of combined caffeic acid phenethyl ester and bevacizumab against hydrogen peroxide-induced oxidative stress in human RPE Cells. Curr Eye Res. 2017;42(12):1659-1666.
  • Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis 2019;9:501–515.
  • Schüle B, Pera RAR., Langston, JW. Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochimica et Biophysica Acta, 2009;1043–1051.
  • Altunlu Ö, Topatan E, Al-yaqoobi Z, Burul F, Bayram C, Sezen S, Ferah Okkay I, Okkay U, Hacimuftuoglu A. Experimental Models in Parkinson's Disease: Advantages and Disadvantages. Ağrı Med J. 2024;2(2): 80-87.
  • Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro. 2019;60:400-411.
  • Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, Kalimo H, et al. Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy. J Neurochem. 2002;81(5): 954-60.
  • Anichtchik OV, Peitsaro N, Rinne JO, Kalimo H, Panula P. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson's disease. Neurobiol Dis. 2001;8(4):707-16.
  • Anichtchik OV, Rinne JO, Kalimo H, Panula P. An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Exp Neurol. 2000;163(1):20-30.
  • LeWitt, P.A., Hong, L. & Moehle, M.S. Anticholinergic drugs for parkinsonism and other movement disorders. J Neural Transm. 2024.
  • Gonzalez F. Diphenhydramine may be useful as a palliative treatment for patients dying with Parkinson's disease and tremors: a case report and discussion. Am J Hosp Palliat Care. 2009;26(6):474-5.
  • Lin TK, Man MQ, Santiago JL, et al. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol. 2013;133(2): 469-478.
  • Or CR, Su HL, Lee WC, Yang SY, Ho C, Chang CC. Diphenhydramine induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling and retards B16-F10 melanoma growth in vivo. Oncol Rep. 2016 36(6):3465-3471.
There are 46 citations in total.

Details

Primary Language English
Subjects Neurology and Neuromuscular Diseases
Journal Section Research Article
Authors

Ahmet Çağrı Ağarı 0009-0005-1280-1395

Muhammed Ali Binzet 0009-0006-4368-6745

Cansu Kara Öztabağ 0000-0003-2108-2458

İrem Kalfa 0009-0002-5658-1011

Uygar Zarif Sevinç 0009-0006-4354-8182

Akif Hakan Kurt 0000-0003-2940-3172

Early Pub Date December 19, 2024
Publication Date
Submission Date November 13, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Ağarı, A. Ç., Binzet, M. A., Kara Öztabağ, C., Kalfa, İ., et al. (2024). Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model. Abant Medical Journal, 13(3), 116-122. https://doi.org/10.47493/abantmedj.1584839
AMA Ağarı AÇ, Binzet MA, Kara Öztabağ C, Kalfa İ, Sevinç UZ, Kurt AH. Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model. Abant Med J. December 2024;13(3):116-122. doi:10.47493/abantmedj.1584839
Chicago Ağarı, Ahmet Çağrı, Muhammed Ali Binzet, Cansu Kara Öztabağ, İrem Kalfa, Uygar Zarif Sevinç, and Akif Hakan Kurt. “Investigation of the Protective and Therapeutic Effects of Diphenhydramine in an in Vitro Parkinson’s Model”. Abant Medical Journal 13, no. 3 (December 2024): 116-22. https://doi.org/10.47493/abantmedj.1584839.
EndNote Ağarı AÇ, Binzet MA, Kara Öztabağ C, Kalfa İ, Sevinç UZ, Kurt AH (December 1, 2024) Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model. Abant Medical Journal 13 3 116–122.
IEEE A. Ç. Ağarı, M. A. Binzet, C. Kara Öztabağ, İ. Kalfa, U. Z. Sevinç, and A. H. Kurt, “Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model”, Abant Med J, vol. 13, no. 3, pp. 116–122, 2024, doi: 10.47493/abantmedj.1584839.
ISNAD Ağarı, Ahmet Çağrı et al. “Investigation of the Protective and Therapeutic Effects of Diphenhydramine in an in Vitro Parkinson’s Model”. Abant Medical Journal 13/3 (December 2024), 116-122. https://doi.org/10.47493/abantmedj.1584839.
JAMA Ağarı AÇ, Binzet MA, Kara Öztabağ C, Kalfa İ, Sevinç UZ, Kurt AH. Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model. Abant Med J. 2024;13:116–122.
MLA Ağarı, Ahmet Çağrı et al. “Investigation of the Protective and Therapeutic Effects of Diphenhydramine in an in Vitro Parkinson’s Model”. Abant Medical Journal, vol. 13, no. 3, 2024, pp. 116-22, doi:10.47493/abantmedj.1584839.
Vancouver Ağarı AÇ, Binzet MA, Kara Öztabağ C, Kalfa İ, Sevinç UZ, Kurt AH. Investigation of the protective and therapeutic effects of Diphenhydramine in an in vitro Parkinson’s model. Abant Med J. 2024;13(3):116-22.