Research Article
BibTex RIS Cite

Deep Learning in Plant Disease Detection: Effectiveness of ResNet Model

Year 2024, Volume: 19 Issue: 69, 31 - 65, 24.07.2024

Abstract

Early detection of plant diseases holds a central place in the agriculture sector and is indispensable for both increasing yield and maintaining ecosystem balance. The advancements in artificial intelligence technologies have revolutionized this field, enabling rapid and effective identification of diseases. The ResNet model used in this study stands out as one of the best deep learning algorithms, demonstrating the ability to accurately classify a wide spectrum of diseases by detecting complex features on plant leaves. This superior performance of ResNet is a critical step in enhancing agricultural productivity and protecting plant health.
The data examined in detail during the training process of the model show that the ResNet model has achieved extraordinary success in detecting plant diseases. The achieved 99% success rate is a clear indicator of how AI-based image processing technologies can play a vital role in agricultural applications. Such accuracy, especially in challenging outdoor conditions and on diverse leaf samples, is particularly impressive and proves the model's ability to understand and classify a wide disease spectrum. These results suggest that the ResNet model could be adopted as an industry standard in diagnosing plant diseases and create a transformation in agricultural applications.
The findings of this study underline the contributions and potential of AI-supported plant disease detection systems for the agriculture sector. With the implementation of the advanced ResNet model, early and accurate disease detection is made possible, significantly improving the efficiency and sustainability of agricultural processes. This technological progress allows for the rapid treatment and prevention of diseases, thereby enhancing the overall quality and safety in agricultural production. This success demonstrates the power of ResNet's deep learning approach to offer applicable and effective solutions to real-world agricultural problems.

References

  • Alatawi, Anwar Abdullah, et al. "Plant disease detection using AI based vgg-16 model." International Journal of Advanced Computer Science and Applications 13.4 (2022).
  • Rezende, Vanessa, et al. "Image processing with convolutional neural networks for classification of plant diseases." 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2019.
  • Yang, Xin, and Tingwei Guo. "Machine learning in plant disease research." March 31 (2017): 1.
  • Ganatra, Nilay, and Atul Patel. "Performance analysis of finetuned convolutional neural network models for plant disease classification." International Journal of Control and Automation 13.3 (2020): 293-305.
  • Wang, Ruiqing, et al. "Deep neural network compression for plant disease recognition." Symmetry 13.10 (2021): 1769.
  • Guo, Yan, et al. "Plant disease identification based on deep learning algorithm in smart farming." Discrete Dynamics in Nature and Society 2020 (2020): 1-11.
  • Li, Lili, Shujuan Zhang, and Bin Wang. "Plant disease detection and classification by deep learning—a review." IEEE Access 9 (2021): 56683- 56698.
  • S. R. Dubey and A. S. Jalal, ‘‘Adapted approach for fruit disease identification using images,’’ Int. J. Comput. Vis. Image Process., vol. 2, no. 3, pp. 44–58, Jul. 2012.
  • A.-L. Chai, B.-J. Li, Y.-X. Shi, Z.-X. Cen, H.-Y. Huang, and J. Liu ‘Recognition of tomato foliage disease based on computer vision technology’’ Acta Horticulturae Sinica, vol. 37, no. 9, pp. 1423–1430, Sep. 2010.
  • Z. R. Li and D. J. He, ‘‘Research on identify technologies of apple’s disease based on mobile photograph image analysis,’’ Comput. Eng. Des., vol. 31, no. 13, pp. 3051–3053 and 3095, Jul. 2010.
  • Z.-X. Guan, J. Tang, B.-J. Yang, Y.-F. Zhou, D.-Y. Fan, and Q. Yao,‘‘Study on recognition method of rice disease based on image,’’ Chin.J. Rice Sci., vol. 24, no. 5, pp. 497–502, May 2010.
  • J. G. A. Barbedo, ‘‘Factors influencing the use of deep learning for plant disease recognition,’’ Biosyst. Eng., vol. 172, pp. 84–91, Aug. 2018.
  • Kamilaris and F. X. Prenafeta-Boldú, ‘‘Deep learning in agriculture: A survey,’’ Comput. Electron. Agricult., vol. 147, pp. 70–90, Apr. 2018.
  • G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, ‘‘Deep learning for plant identification using vein morphological patterns,’’ Comput Electron. Agricult., vol. 127, pp. 418–424, Sep. 2016.
  • S. P. Mohanty, D. P. Hughes, and M. Salathé, ‘‘Using deep learning for image-based plant disease detection,’’ Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016.
  • J. Ma, K. Du, F. Zheng, L. Zhang, Z. Gong, and Z. Sun, ‘‘A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network,’’ Comput. Electron. Agricult., vol. 154, pp. 18–24, Nov. 2018.
  • Y. Kawasaki, H. Uga, S. Kagiwada, and H. Iyatomi, ‘Basic study of automated diagnosis of viral plant diseases using convolutional neural networks,’’ in Proc. Int. Symp. Vis. Comput., Las Vegas, NV, USA, Dec. 2015, pp. 638–645.
  • Y. Kessentini, M. D. Besbes, S. Ammar, and A. Chabbouh, ‘‘A twostage deep neural network for multi-norm license plate detection and recognition,’’ Expert Syst. Appl., vol. 136, pp. 159–170, Dec. 2019.
  • K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, ‘‘Deep learning for plant stress phenotyping: Trends and future perspectives,’’ Trends Plant Sci., vol. 23, no. 10, pp. 883–898, Oct. 2018.
  • V. Singh, N. Sharma, and S. Singh, ‘‘A review of imaging techniques for plant disease detection,’’ Artif. Intell. Agricult., vol. 4, pp. 229–242, Oct. 2020.
  • M. H. Saleem, J. Potgieter, and K. M. Arif, ‘‘Plant disease detection and classification by deep learning,’’ Plants, vol. 8, no. 11, pp. 468–489, Oct. 2019.
  • L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, ‘‘Recent advances in image processing techniques for automated leaf pest and disease recognition—A review,’’ Inf. Process. Agricult., vol. 180, pp. 26–50, Apr. 2020.
  • Nawaz, Marriam, et al. "A robust deep learning approach for tomato plant leaf disease localization and classification." Scientific Reports 12.1 (2022): 18568.

Bitki Hastalıklarını Tespitte Derin Öğrenme: ResNet Modelinin Etkinliği

Year 2024, Volume: 19 Issue: 69, 31 - 65, 24.07.2024

Abstract

Bitki hastalıklarının erken tespiti, tarım sektörünün kalbinde yer almakta ve hem verimi artırmak hem de ekosistemdeki dengenin korunması açısından vazgeçilmez bir öneme sahiptir. Gelişen yapay zeka teknolojileri, bu alanda devrim niteliğinde ilerlemeler sağlayarak, hastalıkların hızlı ve etkin bir şekilde tanınmasına olanak tanımıştır. Bu çalışmada kullanılan ResNet modeli, derin öğrenme algoritmalarının en iyilerinden biri olarak öne çıkmakta, bitki yaprakları üzerindeki karmaşık özellikleri saptayarak, geniş bir hastalık spektrumunu doğru bir şekilde sınıflandırabilme kapasitesini sergilemektedir. ResNet'in bu üstün performansı, tarımsal verimliliği arttırma ve bitki sağlığını koruma konusunda kritik bir adım niteliğindedir.
Modelin eğitim süreci boyunca detaylı bir şekilde incelenen veriler, ResNet modelinin bitki hastalıklarını tespit etmede olağanüstü bir başarıya ulaştığını göstermiştir. Elde edilen %99'luk başarı oranı, yapay zeka tabanlı görüntü işleme teknolojilerinin tarımsal uygulamalarda nasıl hayati bir rol oynayabileceğinin açık bir göstergesidir. Bu seviyede bir doğruluk, özellikle zorlu dış mekan koşullarında ve çeşitlilik gösteren yaprak örnekleri üzerinde gerçekleştirilen analizler için özellikle etkileyicidir ve modelin geniş bir hastalık spektrumunu anlayabilme ve sınıflandırabilme yeteneğini kanıtlar niteliktedir. Bu sonuçlar, ResNet modelinin bitki hastalıkları teşhisinde bir endüstri standardı olarak benimsenebileceğini ve tarımsal uygulamalarda dönüşüm yaratabileceğini işaret etmektedir.
Bu çalışmanın sonuçları, yapay zeka destekli bitki hastalığı tespit sistemlerinin tarım sektörü için sunduğu katkıların ve potansiyelin altını çizmektedir. Gelişmiş ResNet modelinin uygulanmasıyla, hastalıkların erken ve doğru bir şekilde tanınması mümkün kılınarak tarımsal süreçlerin verimliliği ve sürdürülebilirliği önemli ölçüde iyileştirilmektedir. Bu teknolojik ilerleme, hastalıkların hızlı tedavisini ve önlenmesini sağlayarak, genel olarak tarım üretiminde kalite ve güvenliğin artırılmasına olanak tanımaktadır. Bu başarı, ResNet'in derin öğrenme yaklaşımının, gerçek dünya tarımsal sorunlarına uygulanabilir ve etkili çözümler sunma gücünü kanıtlamaktadır.

References

  • Alatawi, Anwar Abdullah, et al. "Plant disease detection using AI based vgg-16 model." International Journal of Advanced Computer Science and Applications 13.4 (2022).
  • Rezende, Vanessa, et al. "Image processing with convolutional neural networks for classification of plant diseases." 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2019.
  • Yang, Xin, and Tingwei Guo. "Machine learning in plant disease research." March 31 (2017): 1.
  • Ganatra, Nilay, and Atul Patel. "Performance analysis of finetuned convolutional neural network models for plant disease classification." International Journal of Control and Automation 13.3 (2020): 293-305.
  • Wang, Ruiqing, et al. "Deep neural network compression for plant disease recognition." Symmetry 13.10 (2021): 1769.
  • Guo, Yan, et al. "Plant disease identification based on deep learning algorithm in smart farming." Discrete Dynamics in Nature and Society 2020 (2020): 1-11.
  • Li, Lili, Shujuan Zhang, and Bin Wang. "Plant disease detection and classification by deep learning—a review." IEEE Access 9 (2021): 56683- 56698.
  • S. R. Dubey and A. S. Jalal, ‘‘Adapted approach for fruit disease identification using images,’’ Int. J. Comput. Vis. Image Process., vol. 2, no. 3, pp. 44–58, Jul. 2012.
  • A.-L. Chai, B.-J. Li, Y.-X. Shi, Z.-X. Cen, H.-Y. Huang, and J. Liu ‘Recognition of tomato foliage disease based on computer vision technology’’ Acta Horticulturae Sinica, vol. 37, no. 9, pp. 1423–1430, Sep. 2010.
  • Z. R. Li and D. J. He, ‘‘Research on identify technologies of apple’s disease based on mobile photograph image analysis,’’ Comput. Eng. Des., vol. 31, no. 13, pp. 3051–3053 and 3095, Jul. 2010.
  • Z.-X. Guan, J. Tang, B.-J. Yang, Y.-F. Zhou, D.-Y. Fan, and Q. Yao,‘‘Study on recognition method of rice disease based on image,’’ Chin.J. Rice Sci., vol. 24, no. 5, pp. 497–502, May 2010.
  • J. G. A. Barbedo, ‘‘Factors influencing the use of deep learning for plant disease recognition,’’ Biosyst. Eng., vol. 172, pp. 84–91, Aug. 2018.
  • Kamilaris and F. X. Prenafeta-Boldú, ‘‘Deep learning in agriculture: A survey,’’ Comput. Electron. Agricult., vol. 147, pp. 70–90, Apr. 2018.
  • G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, ‘‘Deep learning for plant identification using vein morphological patterns,’’ Comput Electron. Agricult., vol. 127, pp. 418–424, Sep. 2016.
  • S. P. Mohanty, D. P. Hughes, and M. Salathé, ‘‘Using deep learning for image-based plant disease detection,’’ Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016.
  • J. Ma, K. Du, F. Zheng, L. Zhang, Z. Gong, and Z. Sun, ‘‘A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network,’’ Comput. Electron. Agricult., vol. 154, pp. 18–24, Nov. 2018.
  • Y. Kawasaki, H. Uga, S. Kagiwada, and H. Iyatomi, ‘Basic study of automated diagnosis of viral plant diseases using convolutional neural networks,’’ in Proc. Int. Symp. Vis. Comput., Las Vegas, NV, USA, Dec. 2015, pp. 638–645.
  • Y. Kessentini, M. D. Besbes, S. Ammar, and A. Chabbouh, ‘‘A twostage deep neural network for multi-norm license plate detection and recognition,’’ Expert Syst. Appl., vol. 136, pp. 159–170, Dec. 2019.
  • K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, ‘‘Deep learning for plant stress phenotyping: Trends and future perspectives,’’ Trends Plant Sci., vol. 23, no. 10, pp. 883–898, Oct. 2018.
  • V. Singh, N. Sharma, and S. Singh, ‘‘A review of imaging techniques for plant disease detection,’’ Artif. Intell. Agricult., vol. 4, pp. 229–242, Oct. 2020.
  • M. H. Saleem, J. Potgieter, and K. M. Arif, ‘‘Plant disease detection and classification by deep learning,’’ Plants, vol. 8, no. 11, pp. 468–489, Oct. 2019.
  • L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, ‘‘Recent advances in image processing techniques for automated leaf pest and disease recognition—A review,’’ Inf. Process. Agricult., vol. 180, pp. 26–50, Apr. 2020.
  • Nawaz, Marriam, et al. "A robust deep learning approach for tomato plant leaf disease localization and classification." Scientific Reports 12.1 (2022): 18568.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Deep Learning, Machine Vision
Journal Section Articles
Authors

Cihan Topçu 0009-0003-3702-9675

Peri Güneş 0009-0002-9080-3239

Publication Date July 24, 2024
Submission Date December 20, 2023
Acceptance Date March 1, 2024
Published in Issue Year 2024 Volume: 19 Issue: 69

Cite

APA Topçu, C., & Güneş, P. (2024). Bitki Hastalıklarını Tespitte Derin Öğrenme: ResNet Modelinin Etkinliği. Anadolu Bil Meslek Yüksekokulu Dergisi, 19(69), 31-65.



All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)