Research Article
BibTex RIS Cite

Makine Öğrenmesinde Ağaç Tabanlı Algoritmalarla Ülkelerin Mutluluk Sınıfının Belirlenmesi

Year 2023, , 243 - 252, 29.12.2023
https://doi.org/10.26650/acin.1251650

Abstract

Mutluluk kavramı günümüzde psikoloji alanı dışında ekonomi, tıp, sosyal ve politik alanlarda da sıklıkla araştırılan bir konu haline gelmiştir. Mutluluğu etkileyenfaktörlerin belirlenmesi, politika yapıcılardan işletmelere kadar önemli bir araştırma alanı olmuştur. Makine öğrenmesi algoritmaları ile yüksek doğrulukta sınıflandırmalar çalışmaları yapmak mümkündür. Bu çalışmada, ağaç tabanlı makine öğrenmesi algoritmaları kullanılarak ülkelerin mutluluk puanlarının sınıflandırılması amaçlanmaktadır. Bu amaçla 2022 yılında yayınlanan Dünya Mutluluk Endeksi’nden alınan veriler kullanılmıştır. Bu veriler üzerinde ağaç tabanlı algoritmalar SRT, ağaç tabanlı topluluk algoritmaları torbalama ve rastgele orman kullanılmıştır. Torbalama ve rastgele orman algoritmaları ile elde edilen modelin test verilerinde %85 kesinlik, duyarlılık ve F1 metrikleri hesaplanmıştır. Çalışmada elde edilen bu modellerin sonuçları yorumlanmıştır.

References

  • Bel, L., Allard, D., Laurent, J. M., Cheddadi, R. & Bar-Hen, A. (2009). CART algorithm for spatial data: Application to environmental and ecological data. Computational Statistics and Data Analysis. 53. 3082-3093. https://doi.org/10.1016/j.csda.2008.09.012 google scholar
  • Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324 google scholar
  • Carlsen, L. (2018). Happiness as a sustainability factor. The World Happiness Index: A posetic-based data analysis. Sustain Sci. 13. 549-571. https://doi.org/10.1007/s11625-017-0482-9 google scholar
  • Chaudhary, M, Dixit, S. & Sahni, N. (2020). Network learning approaches to study world happiness. A Preprint. https://arxiv.org/pdf/2007.09181.pdf google scholar
  • Dao, T. K. (2017). Government expenditure and happiness: Direct and indirect effects. Institute of Social Studies, Netherlands. Retrieved from https://thesis.eur.nl/pub/41656/Dao-Tung-K.-.pdf google scholar
  • Doğruel, M & Fırat, S. Ü. (2021). Veri madenciliği karar ağaçları kullanarak ülkelerin inovasyon değerlerinin tahmini ve doğrusal regresyon modeli ile karşılaştırmalı bir uygulama. Istanbul Business Research, 50(2), 465-493. https://www.doi.org/10.26650/ibr.2021.50.015019 google scholar
  • Efeoğlu, E. (2022). Kablosuz sinyal gücünü kullanarak iç mekan kullanıcı lokalizasyonu için karar ağaçları algoritmalarının karşılaştırılması. Acta Infologica. https://doi.org/10.26650/acin.1076352 google scholar
  • Erdem, Z. U., Uslu, B. Ç. & Fırat, S. Ü. (2021). Customer churn prediction analysis in a telecommunication company with machine learning algorithms. Journal of Industrial Engineering, 32(3). 496-512. google scholar
  • Farooq, S.A. & Shanmugam, S.K. (2022). A performance analysis of supervised machine learning techniques for COVID-19 and happiness report dataset. In: S. Shakya, V.E. Balas, S. Kamolphiwong, KL. Du (Eds) Sentimental analysis and deep learning. Singapore Springer. google scholar
  • Garces, E. J., Adriatico C. & Timbal, L. R. E. (2019). Analysis on the relationships on the global distribution of the World Happiness Index and selected economic development indicators. Open Access Library Journal, 6, 1-16. https://doi.org/10.4236/oalib.110545 google scholar
  • Grabczewski, K., & Duch,W. (1999, June). A general purpose separability criterion for classification systems. Proceedings of the 4th Conference on Neural Networks and Their Application. Zakopane, Poland, 203-208. google scholar
  • Grabczewski, K. (2011), Validated decision trees versus collective decisions. In P. Jedrzejowicz & N. T Nguyen (Eds.) Computational Collective Intelligence Technologies and Applications Third International Conference (pp.324-351). Verlag Berlin Heidelberg: Springer. google scholar
  • Gregorutti, B., Michel, B. & Saint-Pierre, P. (2017). Correlation and variable importance in Random Forests. Stat Comput, 27, 659–67. https://doi.org/10.1007/s11222-016-9646-1 google scholar
  • Helliwell, J. F., Layard, R., Sachs, J. D., De Neve, J.-E., Aknin, L. B., & Wang, S. (Eds.). (2022). World Happiness Report 2022. New York: Sustainable Development Solutions Network. google scholar
  • Ibnat, Gyalmo, Alom, Abdul Awal and Azim (2021, December). Understanding world happiness using machine learning techniques. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). Rajshahi, Bangladesh. https://www.doi.org/10.1109/IC4ME253898.2021.9768407 google scholar
  • James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. New York: Springer. google scholar
  • Jannani, A. Sael, N. & Benabbou, F. (2021, December). Predicting quality of life using machine learning: Case of World Happiness Index. 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia. https://www.doi.org/10.1109/ISAECT53699.2021.9668429 google scholar
  • Khder, M. A., Sayfi, M. A. & Fujo, S.W. (2022). Analysis ofWorld Happiness Report dataset using machine learning approaches. International Journal of Advances in Soft Computing and its Applications. 14(1). 14-34. https://doi.org/10.15849/IJASCA.220328.02 google scholar
  • Kıroğlu, B. S. & Yıldırım, K. (2022). Mutluluk ve belirleyicileri: Türkiye için bir analiz. Journal of Emerging Economies and Policy. 7(2). 5070. google scholar
  • Li, A. (2022). Stock forest model based on Random Forest. In X. Huang&F. Zhang (Eds.) Economic and business management. The Netherlands: CRP Press. google scholar
  • Okumuş, F., Ekmekçioğlu, A. & Kara, S. S. (2021). Modelling ships main and auxiliary engine powers with regression-based machine learning algorithms. Polish Maritime Research, 28(1). 83-96. https://www.doi.org/10.2478/pomr-2021-0008 google scholar
  • Onan, A. (2018). A Clustering Based Classifier Ensemble Approach to Corporate Bankruptcy Prediction. The Journal of Operations Research, Statistics, Econometrics and Management Information Systems, 6(2). 365-376. google scholar
  • Öztürk, S. & Suluk, S. (2020). Mutluluk Ekonomisi: G8 ülkeleri açısından ekonomik büyüme ve mutluluk arasındaki ilişkinin incelenmesi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. (37). 226-249. google scholar
  • Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27. 111-125. http://dx.doi.org/10.1016/j.inffus.2015.06.005 google scholar
  • Suchetana, B., Rajagopalan, B. & Silverstein, J. (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model. Science of the Total Environment, 598, 249- 257. https://doi.org/10.1016/j.scitotenv.2017.03.236 google scholar
  • Ulkhaq, M. M. & Adyatama, A. (2021). Clustering countries according to the world happiness report 2019. Engineering and Applied Science Research, 48(2). 137-150. google scholar
  • World Happiness Report, 2022a, “Data for table 2.1”, https://worldhappiness.report/ed/2022/#appendices-and-data , (29.07.2022) google scholar
  • World Happiness Report, 2022b, “FAQ”, https://worldhappiness.report/faq/ , (29.07.2022) google scholar

Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning

Year 2023, , 243 - 252, 29.12.2023
https://doi.org/10.26650/acin.1251650

Abstract

Today, the concept of happiness is a frequently researched subject in the fields of economy, medicine, and social and political fields, aswell as psychology. It has been an important research area for everyone, from policymakers to companies, to determine the factors affecting happiness. With machine learning algorithms, it is possible to make classifications with very high accuracy. The aim of this study is to use tree-based machine learning algorithms to classify the happiness scores of countries. In order to accomplish this, data from the World Happiness Index published in 2022 were used. On these data, tree-based algorithms CART, tree-based ensemble algorithms Bagging, and Random Forest were used. The test data of the model were obtained with 85% precision, recall, and F1 metrics, which were calculated using Bagging and Random Forest algorithms. The outcomes of the models obtained during the study were interpreted.

References

  • Bel, L., Allard, D., Laurent, J. M., Cheddadi, R. & Bar-Hen, A. (2009). CART algorithm for spatial data: Application to environmental and ecological data. Computational Statistics and Data Analysis. 53. 3082-3093. https://doi.org/10.1016/j.csda.2008.09.012 google scholar
  • Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324 google scholar
  • Carlsen, L. (2018). Happiness as a sustainability factor. The World Happiness Index: A posetic-based data analysis. Sustain Sci. 13. 549-571. https://doi.org/10.1007/s11625-017-0482-9 google scholar
  • Chaudhary, M, Dixit, S. & Sahni, N. (2020). Network learning approaches to study world happiness. A Preprint. https://arxiv.org/pdf/2007.09181.pdf google scholar
  • Dao, T. K. (2017). Government expenditure and happiness: Direct and indirect effects. Institute of Social Studies, Netherlands. Retrieved from https://thesis.eur.nl/pub/41656/Dao-Tung-K.-.pdf google scholar
  • Doğruel, M & Fırat, S. Ü. (2021). Veri madenciliği karar ağaçları kullanarak ülkelerin inovasyon değerlerinin tahmini ve doğrusal regresyon modeli ile karşılaştırmalı bir uygulama. Istanbul Business Research, 50(2), 465-493. https://www.doi.org/10.26650/ibr.2021.50.015019 google scholar
  • Efeoğlu, E. (2022). Kablosuz sinyal gücünü kullanarak iç mekan kullanıcı lokalizasyonu için karar ağaçları algoritmalarının karşılaştırılması. Acta Infologica. https://doi.org/10.26650/acin.1076352 google scholar
  • Erdem, Z. U., Uslu, B. Ç. & Fırat, S. Ü. (2021). Customer churn prediction analysis in a telecommunication company with machine learning algorithms. Journal of Industrial Engineering, 32(3). 496-512. google scholar
  • Farooq, S.A. & Shanmugam, S.K. (2022). A performance analysis of supervised machine learning techniques for COVID-19 and happiness report dataset. In: S. Shakya, V.E. Balas, S. Kamolphiwong, KL. Du (Eds) Sentimental analysis and deep learning. Singapore Springer. google scholar
  • Garces, E. J., Adriatico C. & Timbal, L. R. E. (2019). Analysis on the relationships on the global distribution of the World Happiness Index and selected economic development indicators. Open Access Library Journal, 6, 1-16. https://doi.org/10.4236/oalib.110545 google scholar
  • Grabczewski, K., & Duch,W. (1999, June). A general purpose separability criterion for classification systems. Proceedings of the 4th Conference on Neural Networks and Their Application. Zakopane, Poland, 203-208. google scholar
  • Grabczewski, K. (2011), Validated decision trees versus collective decisions. In P. Jedrzejowicz & N. T Nguyen (Eds.) Computational Collective Intelligence Technologies and Applications Third International Conference (pp.324-351). Verlag Berlin Heidelberg: Springer. google scholar
  • Gregorutti, B., Michel, B. & Saint-Pierre, P. (2017). Correlation and variable importance in Random Forests. Stat Comput, 27, 659–67. https://doi.org/10.1007/s11222-016-9646-1 google scholar
  • Helliwell, J. F., Layard, R., Sachs, J. D., De Neve, J.-E., Aknin, L. B., & Wang, S. (Eds.). (2022). World Happiness Report 2022. New York: Sustainable Development Solutions Network. google scholar
  • Ibnat, Gyalmo, Alom, Abdul Awal and Azim (2021, December). Understanding world happiness using machine learning techniques. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). Rajshahi, Bangladesh. https://www.doi.org/10.1109/IC4ME253898.2021.9768407 google scholar
  • James, G., Witten, D., Hastie, T. & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. New York: Springer. google scholar
  • Jannani, A. Sael, N. & Benabbou, F. (2021, December). Predicting quality of life using machine learning: Case of World Happiness Index. 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia. https://www.doi.org/10.1109/ISAECT53699.2021.9668429 google scholar
  • Khder, M. A., Sayfi, M. A. & Fujo, S.W. (2022). Analysis ofWorld Happiness Report dataset using machine learning approaches. International Journal of Advances in Soft Computing and its Applications. 14(1). 14-34. https://doi.org/10.15849/IJASCA.220328.02 google scholar
  • Kıroğlu, B. S. & Yıldırım, K. (2022). Mutluluk ve belirleyicileri: Türkiye için bir analiz. Journal of Emerging Economies and Policy. 7(2). 5070. google scholar
  • Li, A. (2022). Stock forest model based on Random Forest. In X. Huang&F. Zhang (Eds.) Economic and business management. The Netherlands: CRP Press. google scholar
  • Okumuş, F., Ekmekçioğlu, A. & Kara, S. S. (2021). Modelling ships main and auxiliary engine powers with regression-based machine learning algorithms. Polish Maritime Research, 28(1). 83-96. https://www.doi.org/10.2478/pomr-2021-0008 google scholar
  • Onan, A. (2018). A Clustering Based Classifier Ensemble Approach to Corporate Bankruptcy Prediction. The Journal of Operations Research, Statistics, Econometrics and Management Information Systems, 6(2). 365-376. google scholar
  • Öztürk, S. & Suluk, S. (2020). Mutluluk Ekonomisi: G8 ülkeleri açısından ekonomik büyüme ve mutluluk arasındaki ilişkinin incelenmesi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. (37). 226-249. google scholar
  • Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27. 111-125. http://dx.doi.org/10.1016/j.inffus.2015.06.005 google scholar
  • Suchetana, B., Rajagopalan, B. & Silverstein, J. (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model. Science of the Total Environment, 598, 249- 257. https://doi.org/10.1016/j.scitotenv.2017.03.236 google scholar
  • Ulkhaq, M. M. & Adyatama, A. (2021). Clustering countries according to the world happiness report 2019. Engineering and Applied Science Research, 48(2). 137-150. google scholar
  • World Happiness Report, 2022a, “Data for table 2.1”, https://worldhappiness.report/ed/2022/#appendices-and-data , (29.07.2022) google scholar
  • World Happiness Report, 2022b, “FAQ”, https://worldhappiness.report/faq/ , (29.07.2022) google scholar
There are 28 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Article
Authors

Merve Doğruel 0000-0003-2299-7182

Selin Soner Kara 0000-0002-0894-0772

Publication Date December 29, 2023
Submission Date February 15, 2023
Published in Issue Year 2023

Cite

APA Doğruel, M., & Soner Kara, S. (2023). Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning. Acta Infologica, 7(2), 243-252. https://doi.org/10.26650/acin.1251650
AMA Doğruel M, Soner Kara S. Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning. ACIN. December 2023;7(2):243-252. doi:10.26650/acin.1251650
Chicago Doğruel, Merve, and Selin Soner Kara. “Determining the Happiness Class of Countries With Tree-Based Algorithms in Machine Learning”. Acta Infologica 7, no. 2 (December 2023): 243-52. https://doi.org/10.26650/acin.1251650.
EndNote Doğruel M, Soner Kara S (December 1, 2023) Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning. Acta Infologica 7 2 243–252.
IEEE M. Doğruel and S. Soner Kara, “Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning”, ACIN, vol. 7, no. 2, pp. 243–252, 2023, doi: 10.26650/acin.1251650.
ISNAD Doğruel, Merve - Soner Kara, Selin. “Determining the Happiness Class of Countries With Tree-Based Algorithms in Machine Learning”. Acta Infologica 7/2 (December 2023), 243-252. https://doi.org/10.26650/acin.1251650.
JAMA Doğruel M, Soner Kara S. Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning. ACIN. 2023;7:243–252.
MLA Doğruel, Merve and Selin Soner Kara. “Determining the Happiness Class of Countries With Tree-Based Algorithms in Machine Learning”. Acta Infologica, vol. 7, no. 2, 2023, pp. 243-52, doi:10.26650/acin.1251650.
Vancouver Doğruel M, Soner Kara S. Determining the Happiness Class of Countries with Tree-Based Algorithms in Machine Learning. ACIN. 2023;7(2):243-52.