Research Article
BibTex RIS Cite

Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST

Year 2025, Volume: 9 Issue: 2, 512 - 534, 31.12.2025
https://doi.org/10.26650/acin.1770078
https://izlik.org/JA69KG77LY

Abstract

Predicting financial distress is vital for business survival in dynamic environments. This prediction is realized with the help of models built on financial ratios. Classical models are frequently used to predict financial distress. However, models based on machine learning (ML) algorithms offer new perspectives in this field. This study aims to classify financial distress using ML algorithms. In this study, 39 financial ratios were obtained from the financial statements of 198 enterprises operating in Borsa Istanbul (BIST) between 2015 and 2020. The study was evaluated using three different scenarios. First, all ratios were analyzed using ML algorithms. Second, financial ratios selected via F-regression were used and these ratios were classified using ML algorithms. Third, the stacking ML models were classified into all and selected ratios. All models were tested with a 10-fold cross-validation. According to the experimental results, the CatBoost algorithm obtained the highest average accuracy, with 0.967 in the second scenario. In general, the Boosting-based algorithms showed higher performance than the other algorithms. In addition, the results obtained with the CatBoost algorithm were evaluated by the SHapley Additive exPlanations analysis to explain the importance of financial ratios. SHAP analysis applied to the CatBoost algorithm revealed that the equity-to-asset-ratio (Feature 4) and debt ratio (Feature 3) were the most effective variables in predicting financial distress. The findings underscore the importance of capital structure in assessing financial distress.

References

  • Abdullah, D. A. & AL-Anber, N. J. (2021). A Data Mining Approach To Detection Financial Distress In Iraqi Companies. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12 (14), 2107-2119. google scholar
  • Aksoy, B. & Boztosun, D. (2021). Comparison of classification performance of machine learning methods in prediction financial failure: Evidence from Borsa İstanbul. Hitit Sosyal Bilimler Dergisi, 14 (1), 56-86. https://doi.org/10.17218/hititsbd.880658. google scholar
  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23 (4), 589-609. google scholar
  • Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K. & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model. Journal of International Financial Management & Accounting, 28 (2), 131-171. http://dx.doi.org/10.1111/jifm.12053. google scholar
  • Aydin, N., Sahin, N., Deveci, M. & Pamucar, D. (2022). Prediction of financial distress of companies with artificial neural networks and decision trees models. Machine Learning with Applications, 10, 100432. https://doi.org/10.1016/j.mlwa.2022.100432 . google scholar
  • Beaver, W. H. (1966). Financial ratios as predictors of failure.Journal of accounting research ,71-111 . google scholar
  • Breiman, L.(200l). Random forests.Machine learning ,45 ,5-32 . google scholar
  • Bumin,M.& Ozcalici,M.(2023). Predicting the direction of financial dollarization movement with genetic algorithm and machine learning algorithms: The case of Turkey.Expert Systems with Applications ,2l3 ,l l93Ol .https://doi.org/ lO.lOl6/j.eswa.zOZz.ll93Ol . google scholar
  • Büyükarıkan, B. & Büyükarıkan, U. (2018). Kimya Sektörü İşletmelerinde Finansal Başarisizliğin Tahmini. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 36 (3), 29-50. https://doi.org/10.17065/huniibf.290670. google scholar
  • Chen, T. & Guestrin, C. (2016) of Conference. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785-794. google scholar
  • Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297. https://doi.org/10.1007/BF00994018. google scholar
  • Cover, T. & Hart, P. (1967). Nearest neighbor pattern classification.IEEE transactions on Information Theory, 13 (1), 21-27.https://doi.org/10.1109/TIT.1967.1053964 . google scholar
  • Cox, D. R.(1958). The regression analysis of binary sequences.Journal of the Royal Statistical Society Series B: Statistical Methodology ,20 (2), 215-232 . google scholar
  • Dimitras, A. I., Zanakis, S. H. & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European journal of operational research, 90 (3), 487-513. https://doi.org/10.1016/0377-2217(95)00070-4. google scholar
  • Dizgil, E. (2018). BIST Ticaret Endeksinde yer alan şirketlerin Springate finansal başarısızlık modeli ile incelenmesi. Bilecik Şeyh Edebali Üniversitesi Sosyal Bilimler Dergisi, 3 (2), 248-267. google scholar
  • Elhoseny, M., Metawa, N., Sztano, G. & El-Hasnony, I. M. (2025). Deep learning-based model for financial distress prediction. Annals of operations research, 345 (2), 885-907. google scholar
  • Engin, U. & Durer, S. (2023). Financial distress prediction from time series data using xgboost: Bist100 of borsa istanbul. Doğuş Üniversitesi Dergisi, 24 (2), 589-604. google scholar
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.Annals of eugenics ,7 (2), 179-188 . google scholar
  • Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55 (1), 119-139. https://doi.org/10.1006/jcss.1997.1504. google scholar
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. google scholar
  • Fulmer, J. G., Moon, J. E., Gavin, T. A. & Erwin, M. (1984). A bankruptcy classification model for small firms. Journal of commercial bank lending, 66 (11), 25-37. google scholar
  • Geurts, P., Ernst, D. & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63, 3-42. google scholar
  • Ghisellini, P. & Ulgiati, S. (2020). Circular economy transition in Italy. Achievements, perspectives and constraints.Journal of cleaner production ,243 ,118360 . google scholar
  • Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. & Jaros, J. (2020). Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability, 12 (10), 3954. https://doi.org/10.3390/su12103954. google scholar
  • Hafiz, A., Lukumon, O., Muhammad, B., Olugbenga, A., Hakeem, O. & Saheed, A. (2015) of Conference. Bankruptcy prediction of construction businesses: towards a big data analytics approach. 2015 IEEE first international conference on big data computing service and applications, 347-352. https://doi.org/10.1109/BigDataService.2015.30. google scholar
  • Han, J., Kamber, M. & Pei, J. (2012). Data Mining: Concepts and Techniques (Vol. 5). Massachusetts: Morgan Kaufmann. google scholar
  • Huang, C., Dai, C. & Guo, M. (2015). A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection.Applied Mathematics and Computation ,251 ,431-441 . https://doi.org/10.1016/j.amc.2014.11.077 . google scholar
  • Huang, Y.-P. & Yen, M.-F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction.Applied Soft Computing ,83 ,lO5663 . https://doi.org/ lO.lOl6/j.asoc.zOl9.lO5663 . google scholar
  • Jawabreh, O. A., Al Rawashdeh, F. & Senjelawi, O. (2017). Using Altman's Z-Score model to predict the financial failure of hospitality companies-case of Jordan. International Journal of Information, Business and Management, 9 (2), 141. google scholar
  • Jiang, C., Zhou, Y. & Chen, B. (2023). Mining semantic features in patent text for financial distress prediction. Technological Forecasting and Social Change, 190, 122450. https://doi.org/10.1016/j.techfore.2023.122450. google scholar
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30. google scholar
  • Laitinen, E. K. & Laitinen, T. (2000). Bankruptcy prediction: Application of the Taylor's expansion in logistic regression.International review of financial analysis ,9 (4), 327-349 . https://doi.org/10.1016/S1057-5219(00)00039-9 . google scholar
  • Malakauskas, A. & Lakštutienė, A. (2021). Financial distress prediction for small and medium enterprises using machine learning techniques.Engineering Economics ,32 (1), 4-14 . https://doi.org/10.5755/j01.ee.32.1.27382 . google scholar
  • Medetoğlu, B. & Tutar, S. (2023). Springate S ve Fulmer H skor modelleri ile finansal başarisizlik tespiti: borsa İstanbul tekstil, giyim eşyasi ve deri sektörü üzerine bir uygulama. Doğuş Üniversitesi Dergisi, 24 (1), 307-319. google scholar
  • Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131. https://doi.org/10.2307/2490395. google scholar
  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31. google scholar
  • Qian, H., Wang, B., Yuan, M., Gao, S. & Song, Y. (2022). Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree. Expert Systems with Applications, 190, 116202. https://doi.org/10.1016/j.eswa.2021.116202. google scholar
  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors.nature ,323 (6088), 533-536 . google scholar
  • Saha, P. (2024). Comprehensive Analysis of Altman’s Z Score, Zmijewski X Score, Springate S-Score and Grover G-Score Model for Predicting Financial Health of Listed Non-Bank Financial Institutions (NBFIs) of Bangladesh. Open Journal of Business and Management, 12, 3342-3365. google scholar
  • Sánchez-Almeyda, C., González-Bueno, J., Koval, V., Reyes-Maldonado, N., Kryshtal, H. & Zharikova, O. (2025). Predicting financial distress in the food production sector: a dual-model approach using Z-score and O-score methods. Discover Sustainability, 6 (1), 731. google scholar
  • Sankhwar, S., Gupta, D., Ramya, K., Rani, S. S., Shankar, K. & Lakshmanaprabu, S. (2020). Improved grey wolf optimization-based feature subset selection with fuzzy neural classifier for financial crisis prediction. Soft Computing, 24 (1), 101-110. google scholar
  • Selimefendigil, S. (2023). Predicting financial distress using supervised machine learning algorithms: an application on borsa istanbul. Journal of Economics Finance and Accounting, 10 (4), 217-223. google scholar
  • Sethi, P., Singh, A. & Gupta, V. (2025). Predicting Financial Distress Using Machine Learning Techniques. Asia-Pacific Financial Markets, 1-23. google scholar
  • Soydaş, S. & Çam, H. (2024). Predicting Financial Failure in Companies by Employing Machine Learning Methods. International Journal of Social Science Research and Review, 7, 111-125. google scholar
  • Springate, G. L. (1978), Predicting the possibility of failure in a Canadian firm: A discriminant analysis, Simon Fraser University. google scholar
  • Sun, J., Li, H., Huang, Q.-H. & He, K.-Y. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41-56. https://doi.org/10.1016/j.knosys.2013.12.006. google scholar
  • Sun, J., Fujita, H., Zheng, Y. & Ai, W. (2021). Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods. Information Sciences, 559, 153-170. https://doi.org/10.1016/j.ins.2021.01.059. google scholar
  • Tran, K. L., Le, H. A., Nguyen, T. H. & Nguyen, D. T. (2022). Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam.Data ,7 (11), 160 . https://doi.org/10 .3390/data7l lO l6O . google scholar
  • Van Gestel, T., Baesens, B., Suykens, J. A., Van den Poel, D., Baestaens, D.-E. & Willekens, M. (2006). Bayesian kernel based classification for financial distress detection. European journal of operational research, 172 (3), 979-1003. https://doi.org/10.1016/j.ejor.2004.11.009. google scholar
  • Wang, G., Chen, G. & Chu, Y. (2018). A new random subspace method incorporating sentiment and textual information for financial distress prediction. Electronic Commerce Research and Applications, 29, 30-49. https://doi.org/10.1016/j.elerap.2018.03.004. google scholar
  • Yakut, E. & Elmas, B. (2013). Estimating financial failure of enterprises with data mining and discriminant analysis.Afyon Kocatepe University İİBF Journal ,15 (1), 237-254 . google scholar
  • Yıldırım, M. Ç. & Özekenci, S. Y. (2025). Finansal başarısızlık tahmin modellerinin karşılaştırılması: BİST gıda ve içecek sektöründe bir uygulama.Üçüncü Sektör Sosyal Ekonomi Dergisi ,60 (1), 982-1004 . google scholar
  • Zhang, R., Zhang, Z., Wang, D. & Du, M. (2022). Financial Distress Prediction with a Novel Diversity-Considered GA-MLP Ensemble Algorithm.Neural Processing Letters ,54, 1175–1194 . https://doi.org/10 .3390/data7l lO l6O . google scholar
  • Zhao, S., Xu, K., Wang, Z., Liang, C., Lu, W. & Chen, B. (2022). Financial distress prediction by combining sentiment tone features. Economic Modelling, 106, 105709. https://doi.org/10.1016/j.econmod.2021.105709. google scholar
  • Zhong, J. & Wang, Z. (2022). Artificial intelligence techniques for financial distress prediction. AIMS Mathematics, 7 (12), 20891-20908. google scholar

Year 2025, Volume: 9 Issue: 2, 512 - 534, 31.12.2025
https://doi.org/10.26650/acin.1770078
https://izlik.org/JA69KG77LY

Abstract

References

  • Abdullah, D. A. & AL-Anber, N. J. (2021). A Data Mining Approach To Detection Financial Distress In Iraqi Companies. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12 (14), 2107-2119. google scholar
  • Aksoy, B. & Boztosun, D. (2021). Comparison of classification performance of machine learning methods in prediction financial failure: Evidence from Borsa İstanbul. Hitit Sosyal Bilimler Dergisi, 14 (1), 56-86. https://doi.org/10.17218/hititsbd.880658. google scholar
  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23 (4), 589-609. google scholar
  • Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K. & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model. Journal of International Financial Management & Accounting, 28 (2), 131-171. http://dx.doi.org/10.1111/jifm.12053. google scholar
  • Aydin, N., Sahin, N., Deveci, M. & Pamucar, D. (2022). Prediction of financial distress of companies with artificial neural networks and decision trees models. Machine Learning with Applications, 10, 100432. https://doi.org/10.1016/j.mlwa.2022.100432 . google scholar
  • Beaver, W. H. (1966). Financial ratios as predictors of failure.Journal of accounting research ,71-111 . google scholar
  • Breiman, L.(200l). Random forests.Machine learning ,45 ,5-32 . google scholar
  • Bumin,M.& Ozcalici,M.(2023). Predicting the direction of financial dollarization movement with genetic algorithm and machine learning algorithms: The case of Turkey.Expert Systems with Applications ,2l3 ,l l93Ol .https://doi.org/ lO.lOl6/j.eswa.zOZz.ll93Ol . google scholar
  • Büyükarıkan, B. & Büyükarıkan, U. (2018). Kimya Sektörü İşletmelerinde Finansal Başarisizliğin Tahmini. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 36 (3), 29-50. https://doi.org/10.17065/huniibf.290670. google scholar
  • Chen, T. & Guestrin, C. (2016) of Conference. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785-794. google scholar
  • Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297. https://doi.org/10.1007/BF00994018. google scholar
  • Cover, T. & Hart, P. (1967). Nearest neighbor pattern classification.IEEE transactions on Information Theory, 13 (1), 21-27.https://doi.org/10.1109/TIT.1967.1053964 . google scholar
  • Cox, D. R.(1958). The regression analysis of binary sequences.Journal of the Royal Statistical Society Series B: Statistical Methodology ,20 (2), 215-232 . google scholar
  • Dimitras, A. I., Zanakis, S. H. & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European journal of operational research, 90 (3), 487-513. https://doi.org/10.1016/0377-2217(95)00070-4. google scholar
  • Dizgil, E. (2018). BIST Ticaret Endeksinde yer alan şirketlerin Springate finansal başarısızlık modeli ile incelenmesi. Bilecik Şeyh Edebali Üniversitesi Sosyal Bilimler Dergisi, 3 (2), 248-267. google scholar
  • Elhoseny, M., Metawa, N., Sztano, G. & El-Hasnony, I. M. (2025). Deep learning-based model for financial distress prediction. Annals of operations research, 345 (2), 885-907. google scholar
  • Engin, U. & Durer, S. (2023). Financial distress prediction from time series data using xgboost: Bist100 of borsa istanbul. Doğuş Üniversitesi Dergisi, 24 (2), 589-604. google scholar
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.Annals of eugenics ,7 (2), 179-188 . google scholar
  • Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55 (1), 119-139. https://doi.org/10.1006/jcss.1997.1504. google scholar
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. google scholar
  • Fulmer, J. G., Moon, J. E., Gavin, T. A. & Erwin, M. (1984). A bankruptcy classification model for small firms. Journal of commercial bank lending, 66 (11), 25-37. google scholar
  • Geurts, P., Ernst, D. & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63, 3-42. google scholar
  • Ghisellini, P. & Ulgiati, S. (2020). Circular economy transition in Italy. Achievements, perspectives and constraints.Journal of cleaner production ,243 ,118360 . google scholar
  • Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. & Jaros, J. (2020). Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability, 12 (10), 3954. https://doi.org/10.3390/su12103954. google scholar
  • Hafiz, A., Lukumon, O., Muhammad, B., Olugbenga, A., Hakeem, O. & Saheed, A. (2015) of Conference. Bankruptcy prediction of construction businesses: towards a big data analytics approach. 2015 IEEE first international conference on big data computing service and applications, 347-352. https://doi.org/10.1109/BigDataService.2015.30. google scholar
  • Han, J., Kamber, M. & Pei, J. (2012). Data Mining: Concepts and Techniques (Vol. 5). Massachusetts: Morgan Kaufmann. google scholar
  • Huang, C., Dai, C. & Guo, M. (2015). A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection.Applied Mathematics and Computation ,251 ,431-441 . https://doi.org/10.1016/j.amc.2014.11.077 . google scholar
  • Huang, Y.-P. & Yen, M.-F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction.Applied Soft Computing ,83 ,lO5663 . https://doi.org/ lO.lOl6/j.asoc.zOl9.lO5663 . google scholar
  • Jawabreh, O. A., Al Rawashdeh, F. & Senjelawi, O. (2017). Using Altman's Z-Score model to predict the financial failure of hospitality companies-case of Jordan. International Journal of Information, Business and Management, 9 (2), 141. google scholar
  • Jiang, C., Zhou, Y. & Chen, B. (2023). Mining semantic features in patent text for financial distress prediction. Technological Forecasting and Social Change, 190, 122450. https://doi.org/10.1016/j.techfore.2023.122450. google scholar
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30. google scholar
  • Laitinen, E. K. & Laitinen, T. (2000). Bankruptcy prediction: Application of the Taylor's expansion in logistic regression.International review of financial analysis ,9 (4), 327-349 . https://doi.org/10.1016/S1057-5219(00)00039-9 . google scholar
  • Malakauskas, A. & Lakštutienė, A. (2021). Financial distress prediction for small and medium enterprises using machine learning techniques.Engineering Economics ,32 (1), 4-14 . https://doi.org/10.5755/j01.ee.32.1.27382 . google scholar
  • Medetoğlu, B. & Tutar, S. (2023). Springate S ve Fulmer H skor modelleri ile finansal başarisizlik tespiti: borsa İstanbul tekstil, giyim eşyasi ve deri sektörü üzerine bir uygulama. Doğuş Üniversitesi Dergisi, 24 (1), 307-319. google scholar
  • Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131. https://doi.org/10.2307/2490395. google scholar
  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31. google scholar
  • Qian, H., Wang, B., Yuan, M., Gao, S. & Song, Y. (2022). Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree. Expert Systems with Applications, 190, 116202. https://doi.org/10.1016/j.eswa.2021.116202. google scholar
  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors.nature ,323 (6088), 533-536 . google scholar
  • Saha, P. (2024). Comprehensive Analysis of Altman’s Z Score, Zmijewski X Score, Springate S-Score and Grover G-Score Model for Predicting Financial Health of Listed Non-Bank Financial Institutions (NBFIs) of Bangladesh. Open Journal of Business and Management, 12, 3342-3365. google scholar
  • Sánchez-Almeyda, C., González-Bueno, J., Koval, V., Reyes-Maldonado, N., Kryshtal, H. & Zharikova, O. (2025). Predicting financial distress in the food production sector: a dual-model approach using Z-score and O-score methods. Discover Sustainability, 6 (1), 731. google scholar
  • Sankhwar, S., Gupta, D., Ramya, K., Rani, S. S., Shankar, K. & Lakshmanaprabu, S. (2020). Improved grey wolf optimization-based feature subset selection with fuzzy neural classifier for financial crisis prediction. Soft Computing, 24 (1), 101-110. google scholar
  • Selimefendigil, S. (2023). Predicting financial distress using supervised machine learning algorithms: an application on borsa istanbul. Journal of Economics Finance and Accounting, 10 (4), 217-223. google scholar
  • Sethi, P., Singh, A. & Gupta, V. (2025). Predicting Financial Distress Using Machine Learning Techniques. Asia-Pacific Financial Markets, 1-23. google scholar
  • Soydaş, S. & Çam, H. (2024). Predicting Financial Failure in Companies by Employing Machine Learning Methods. International Journal of Social Science Research and Review, 7, 111-125. google scholar
  • Springate, G. L. (1978), Predicting the possibility of failure in a Canadian firm: A discriminant analysis, Simon Fraser University. google scholar
  • Sun, J., Li, H., Huang, Q.-H. & He, K.-Y. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41-56. https://doi.org/10.1016/j.knosys.2013.12.006. google scholar
  • Sun, J., Fujita, H., Zheng, Y. & Ai, W. (2021). Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods. Information Sciences, 559, 153-170. https://doi.org/10.1016/j.ins.2021.01.059. google scholar
  • Tran, K. L., Le, H. A., Nguyen, T. H. & Nguyen, D. T. (2022). Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam.Data ,7 (11), 160 . https://doi.org/10 .3390/data7l lO l6O . google scholar
  • Van Gestel, T., Baesens, B., Suykens, J. A., Van den Poel, D., Baestaens, D.-E. & Willekens, M. (2006). Bayesian kernel based classification for financial distress detection. European journal of operational research, 172 (3), 979-1003. https://doi.org/10.1016/j.ejor.2004.11.009. google scholar
  • Wang, G., Chen, G. & Chu, Y. (2018). A new random subspace method incorporating sentiment and textual information for financial distress prediction. Electronic Commerce Research and Applications, 29, 30-49. https://doi.org/10.1016/j.elerap.2018.03.004. google scholar
  • Yakut, E. & Elmas, B. (2013). Estimating financial failure of enterprises with data mining and discriminant analysis.Afyon Kocatepe University İİBF Journal ,15 (1), 237-254 . google scholar
  • Yıldırım, M. Ç. & Özekenci, S. Y. (2025). Finansal başarısızlık tahmin modellerinin karşılaştırılması: BİST gıda ve içecek sektöründe bir uygulama.Üçüncü Sektör Sosyal Ekonomi Dergisi ,60 (1), 982-1004 . google scholar
  • Zhang, R., Zhang, Z., Wang, D. & Du, M. (2022). Financial Distress Prediction with a Novel Diversity-Considered GA-MLP Ensemble Algorithm.Neural Processing Letters ,54, 1175–1194 . https://doi.org/10 .3390/data7l lO l6O . google scholar
  • Zhao, S., Xu, K., Wang, Z., Liang, C., Lu, W. & Chen, B. (2022). Financial distress prediction by combining sentiment tone features. Economic Modelling, 106, 105709. https://doi.org/10.1016/j.econmod.2021.105709. google scholar
  • Zhong, J. & Wang, Z. (2022). Artificial intelligence techniques for financial distress prediction. AIMS Mathematics, 7 (12), 20891-20908. google scholar
There are 55 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other), Knowledge Representation and Reasoning, Business Information Systems
Journal Section Research Article
Authors

Birkan Büyükarıkan 0000-0002-9703-9678

Ulukan Büyükarıkan 0000-0002-1539-7157

Submission Date August 21, 2025
Acceptance Date October 31, 2025
Publication Date December 31, 2025
DOI https://doi.org/10.26650/acin.1770078
IZ https://izlik.org/JA69KG77LY
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Büyükarıkan, B., & Büyükarıkan, U. (2025). Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST. Acta Infologica, 9(2), 512-534. https://doi.org/10.26650/acin.1770078
AMA 1.Büyükarıkan B, Büyükarıkan U. Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST. ACIN. 2025;9(2):512-534. doi:10.26650/acin.1770078
Chicago Büyükarıkan, Birkan, and Ulukan Büyükarıkan. 2025. “Predicting Financial Distress With Machine Learning and Explainable Artificial Intelligence: A Study on BIST”. Acta Infologica 9 (2): 512-34. https://doi.org/10.26650/acin.1770078.
EndNote Büyükarıkan B, Büyükarıkan U (December 1, 2025) Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST. Acta Infologica 9 2 512–534.
IEEE [1]B. Büyükarıkan and U. Büyükarıkan, “Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST”, ACIN, vol. 9, no. 2, pp. 512–534, Dec. 2025, doi: 10.26650/acin.1770078.
ISNAD Büyükarıkan, Birkan - Büyükarıkan, Ulukan. “Predicting Financial Distress With Machine Learning and Explainable Artificial Intelligence: A Study on BIST”. Acta Infologica 9/2 (December 1, 2025): 512-534. https://doi.org/10.26650/acin.1770078.
JAMA 1.Büyükarıkan B, Büyükarıkan U. Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST. ACIN. 2025;9:512–534.
MLA Büyükarıkan, Birkan, and Ulukan Büyükarıkan. “Predicting Financial Distress With Machine Learning and Explainable Artificial Intelligence: A Study on BIST”. Acta Infologica, vol. 9, no. 2, Dec. 2025, pp. 512-34, doi:10.26650/acin.1770078.
Vancouver 1.Büyükarıkan B, Büyükarıkan U. Predicting Financial Distress with Machine Learning and Explainable Artificial Intelligence: A Study on BIST. ACIN [Internet]. 2025 Dec. 1;9(2):512-34. Available from: https://izlik.org/JA69KG77LY