Research Article
BibTex RIS Cite

Coğrafi Ağırlıklı Regresyon Modelinde Kernel Fonksiyonlarının Karşılaştırılması: Bir Uygulama Olarak İntihar Verileri

Year 2021, , 333 - 340, 30.12.2021
https://doi.org/10.26650/acin.914952

Abstract

İntiharın toplumda bıraktığı travmatik izler, kayıplara bağlı yaşanılan duygusal yıkımlar intihar nedenlerinin belirlenmesini oldukça önemli kılmaktadır. Bu çalışmada 2019 yılına ait Türkiye’nin 81 ili için intihar sayısı verisi kullanılmıştır. İntiharı etkileyen faktörler ve mekansal farklılıkların intihar üzerindeki etkileri coğrafi ağırlıklı regresyon modeller (GWR) ile analiz edilmiş ve tahmin yapılmıştır. Farklı kernel fonksiyonları ile birlikte GWR modelleri uygulanmış ve en iyi GWR modeli bisquare kernel fonksiyonu ile bulunmuştur. İntihar sayılarını etkileyen faktörler insani gelişim endeksi, internet kullanıcı oranı ve işsizlik sayısı olarak elde edilmiştir. Sonuçlar incelendiğinde illerin yerleşim yerlerine göre intihar sayılarının farklı faktörlerden etkilendiği görülmektedir. Ayrıca 2019 yılı intihar sayıları ve tahmin değerlerinin haritalandırılması yapılmış ve sonuçlar oldukça benzer bulunmuştur. Ülke genelinde intihar sayısının en yüksek olduğu il İstanbul’dur.

References

  • Dennet A. (2014). An Introduction to Geographically Weighted Regression in R. [Internet] https://rpubs.com/adam_dennett/44975
  • Bektaş, M. (2015). 2002 ve 2012 Yıllarında Türkiye’de Meydana Gelen İntihar Vakası Nedenlerinin Mekansal Analizi (Yayınlanmamış Yüksek Lisans Tezi). Fatih Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul
  • Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2), 353-360.
  • Bulut, E., & Aydın, V. G. (2020). İntiharı Etkileyen Sosyal ve Ekonomik Faktörlerin Beta Regresyon Analizi ile Belirlenmesi. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(2), 422-436.
  • Devrimci-Ozguven, H., & Sayıl, I. (2003). Suicide attempts in Turkey: results of the WHO—EURO multicentre study on suicidal behavior. The Canadian Journal of Psychiatry, 48(5), 324-329.
  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.
  • Frutos, A. M., Sloan, C. D., & Merrill, R. M. (2018). Modeling the effects of atmospheric pressure on suicide rates in the USA using geographically weighted regression. PloS one, 13(12), e0206992.
  • Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2013). GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1306.0413.
  • Ha, H., & Tu, W. (2018). An ecological study on the spatially varying relationship between county-level suicide rates and altitude in the United States. International journal of environmental research and public health, 15(4), 671.
  • Iyanda, A. E., Chima-Adaralegbe, N., Adeleke, R., & Lu, Y. (2021) Covariation of suicide and HIV in 186 countries: a spatial autoregressive and multiscale geographically weighted regression analyses. Journal of Public Health, 1-11.
  • Kyonne, J. (2019). Impact of Social Service Expenditures on the Suicide Rate: The Cases of Asia Countries. Journal of Social Service Research, 45(1), 12-15.
  • Lu, B., Yang, W., Ge, Y., & Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 71, 41-57.
  • Stojanova, D., Debeljak, M., Ceci, M., Appice, A., Malerba, D., & Džeroski, S. (2012). Dealing with spatial autocorrelation in gene flow modeling. In Developments in Environmental Modelling (Vol. 25, pp. 35-49): Elsevier.
  • Tasyurek, M., & Celik, M. (2020). RNN-GWR: A geographically weighted regression approach for frequently updated data. Neurocomputing, 399, 258-270.
  • Tran, F., & Morrison, C. (2020). Income inequality and suicide in the United States: A spatial analysis of 1684 US counties using geographically weighted regression. Spatial and spatio-temporal epidemiology, 34, 100359.
  • Tunalı, H., Özkaya, S. (2016).Türkiye’de işsizlik-intihar ilişkisinin analizi. Kırklareli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 56-70.
  • Türkiye İstatistik Kurumu, İntihar İstatistikleri, 2018 [Internet]. https://data.tuik.gov.tr/Bulten/Index?p=Olum-Istatistikleri-2018-30701
  • Vaz, E., Shaker, R. R., & Cusimano, M. D. (2020). A geographical exploration of environmental and land use characteristics of suicide in the greater Toronto area. Psychiatry research, 287, 112790.

Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application

Year 2021, , 333 - 340, 30.12.2021
https://doi.org/10.26650/acin.914952

Abstract

The traumatic traces of suicide in a society and the emotional devastation due to these losses make it very important to determine the causes of suicide. In this study, the number of suicides data was used for Turkey’s 81 provinces in 2019.The effects of factors affecting suicide and spatial differences on suicide were analyzed and predicted with geographically weighted regression models (GWR). GWR models were applied with different kernel functions, and the best GWR model was found with the bisquare kernel function. Factors affecting suicide numbers were established as human development index, proportion of internet users, and numbers of unemployment. When the results were examined, it was seen that the number of suicides in the provinces was affected by different factors. In addition, the 2019 suicide numbers and predicted values were mapped, and the results were found to be quite similar. The province with the highest number of suicides across the country was Istanbul.

References

  • Dennet A. (2014). An Introduction to Geographically Weighted Regression in R. [Internet] https://rpubs.com/adam_dennett/44975
  • Bektaş, M. (2015). 2002 ve 2012 Yıllarında Türkiye’de Meydana Gelen İntihar Vakası Nedenlerinin Mekansal Analizi (Yayınlanmamış Yüksek Lisans Tezi). Fatih Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul
  • Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71(2), 353-360.
  • Bulut, E., & Aydın, V. G. (2020). İntiharı Etkileyen Sosyal ve Ekonomik Faktörlerin Beta Regresyon Analizi ile Belirlenmesi. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(2), 422-436.
  • Devrimci-Ozguven, H., & Sayıl, I. (2003). Suicide attempts in Turkey: results of the WHO—EURO multicentre study on suicidal behavior. The Canadian Journal of Psychiatry, 48(5), 324-329.
  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.
  • Frutos, A. M., Sloan, C. D., & Merrill, R. M. (2018). Modeling the effects of atmospheric pressure on suicide rates in the USA using geographically weighted regression. PloS one, 13(12), e0206992.
  • Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2013). GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1306.0413.
  • Ha, H., & Tu, W. (2018). An ecological study on the spatially varying relationship between county-level suicide rates and altitude in the United States. International journal of environmental research and public health, 15(4), 671.
  • Iyanda, A. E., Chima-Adaralegbe, N., Adeleke, R., & Lu, Y. (2021) Covariation of suicide and HIV in 186 countries: a spatial autoregressive and multiscale geographically weighted regression analyses. Journal of Public Health, 1-11.
  • Kyonne, J. (2019). Impact of Social Service Expenditures on the Suicide Rate: The Cases of Asia Countries. Journal of Social Service Research, 45(1), 12-15.
  • Lu, B., Yang, W., Ge, Y., & Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 71, 41-57.
  • Stojanova, D., Debeljak, M., Ceci, M., Appice, A., Malerba, D., & Džeroski, S. (2012). Dealing with spatial autocorrelation in gene flow modeling. In Developments in Environmental Modelling (Vol. 25, pp. 35-49): Elsevier.
  • Tasyurek, M., & Celik, M. (2020). RNN-GWR: A geographically weighted regression approach for frequently updated data. Neurocomputing, 399, 258-270.
  • Tran, F., & Morrison, C. (2020). Income inequality and suicide in the United States: A spatial analysis of 1684 US counties using geographically weighted regression. Spatial and spatio-temporal epidemiology, 34, 100359.
  • Tunalı, H., Özkaya, S. (2016).Türkiye’de işsizlik-intihar ilişkisinin analizi. Kırklareli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 56-70.
  • Türkiye İstatistik Kurumu, İntihar İstatistikleri, 2018 [Internet]. https://data.tuik.gov.tr/Bulten/Index?p=Olum-Istatistikleri-2018-30701
  • Vaz, E., Shaker, R. R., & Cusimano, M. D. (2020). A geographical exploration of environmental and land use characteristics of suicide in the greater Toronto area. Psychiatry research, 287, 112790.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Tuba Koc 0000-0001-5204-0846

Pelin Akın 0000-0003-3798-4827

Publication Date December 30, 2021
Submission Date April 13, 2021
Published in Issue Year 2021

Cite

APA Koc, T., & Akın, P. (2021). Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application. Acta Infologica, 5(2), 333-340. https://doi.org/10.26650/acin.914952
AMA Koc T, Akın P. Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application. ACIN. December 2021;5(2):333-340. doi:10.26650/acin.914952
Chicago Koc, Tuba, and Pelin Akın. “Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data As an Application”. Acta Infologica 5, no. 2 (December 2021): 333-40. https://doi.org/10.26650/acin.914952.
EndNote Koc T, Akın P (December 1, 2021) Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application. Acta Infologica 5 2 333–340.
IEEE T. Koc and P. Akın, “Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application”, ACIN, vol. 5, no. 2, pp. 333–340, 2021, doi: 10.26650/acin.914952.
ISNAD Koc, Tuba - Akın, Pelin. “Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data As an Application”. Acta Infologica 5/2 (December 2021), 333-340. https://doi.org/10.26650/acin.914952.
JAMA Koc T, Akın P. Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application. ACIN. 2021;5:333–340.
MLA Koc, Tuba and Pelin Akın. “Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data As an Application”. Acta Infologica, vol. 5, no. 2, 2021, pp. 333-40, doi:10.26650/acin.914952.
Vancouver Koc T, Akın P. Comparision of Kernel Functions in Geographically Weighted Regression Model: Suicide Data as an Application. ACIN. 2021;5(2):333-40.