Aims: This study aimed to investigate the use of a convolutional neural network (CNN) deep learning approach to accurately identify total knee arthroplasty (TKA) implants from X-ray radiographs.
Methods: This retrospective study employed a deep learning CNN system to analyze pre-revision and post-operative knee X-rays from TKA patients. We excluded cases involving unicondylar and revision knee replacements, as well as low-quality or unavailable X-ray images and those with other implants. Ten cruciate-retaining TKA replacement models were assessed from various manufacturers. The training set comprised 69% of the data, with the remaining 31% in the test set, augmented due to limited images. Evaluation metrics included accuracy and F1 score, and we developed the software in Python using the TensorFlow library for the CNN method. A computer scientist with AI expertise managed data processing and testing, calculating specificity, sensitivity, and accuracy to assess CNN performance.
Results: In this study, a total of 282 AP and lateral X-rays from 141 patients were examined, encompassing 10 distinct knee prosthesis models from various manufacturers, each with varying X-ray counts. The CNN technique exhibited flawless accuracy, achieving a 100% identification rate for both the manufacturer and model of TKA across all 10 different models. Furthermore, the CNN method demonstrated exceptional specificity and sensitivity, consistently reaching 100% for each individual implant model.
Conclusion: This study underscores the impressive capacity of deep learning AI algorithms to precisely identify knee arthroplasty implants from X-ray radiographs. It highlights AI’s ability to detect subtle changes imperceptible to humans, execute precise computations, and handle extensive data. The accurate recognition of knee replacement implants using AI algorithms prior to revision surgeries promises to enhance procedure efficiency and outcomes.
The current study was carried out with the permission of the Fırat University Medical Faculty Ethics Committee (Date: 29.12.2022, Decision No: 16-21).
Primary Language | English |
---|---|
Subjects | Orthopaedics |
Journal Section | Research Articles |
Authors | |
Early Pub Date | October 26, 2023 |
Publication Date | October 27, 2023 |
Published in Issue | Year 2023 |
TR DİZİN ULAKBİM and International Indexes (1b)
Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]
Note: Our journal is not WOS indexed and therefore is not classified as Q.
You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show
Journal Indexes and Platforms:
TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.The indexes of the journal's are;
The platforms of the journal's are;
The indexes/platforms of the journal are;
TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit
EBSCO, DOAJ, OAJI is under evaluation.
Journal articles are evaluated as "Double-Blind Peer Review"