Research Article
BibTex RIS Cite

Klinik ve demografik değişkenlerle obstrüktif uyku apne şiddeti makine öğrenimi tabanlı tahmin edilebilir mi?

Year 2026, Volume: 8 Issue: 1, 7 - 11, 06.01.2026
https://doi.org/10.38053/acmj.1801322

Abstract

Amaç:
Obstrüktif uyku apne sendromu (OSAS), uyku sırasında üst havayolunun tekrarlayan kollapslarıyla seyreden, aralıklı hipoksemi ve uykunun bölünmesiyle karakterize yaygın bir hastalıktır. Tanı, yüksek maliyetli ve erişimi sınırlı polisomnografi (PSG) ile konulmaktadır. Bu çalışmada yalnızca klinik ve demografik değişkenlere dayalı, PSG verileri kullanılmadan orta-ağır OSAS’ı (AHI ≥15) öngörebilen bir makine öğrenimi (ML) modeli geliştirilmesi amaçlanmıştır.

Gereç ve Yöntem:
2019–2024 yılları arasında OSAS şüphesiyle değerlendirilen 1281 erişkin hasta retrospektif olarak incelendi. Değişkenler arasında yaş, cinsiyet, beden kitle indeksi (BKI), boyun çevresi, Epworth Uykululuk Skalası (ESS), sigara kullanımı ve hipertansiyon ile diyabet gibi komorbiditeler yer aldı. Dört algoritma (Random Forest, Gradient Boosting, Lojistik Regresyon ve Destek Vektör Makineleri) kullanılarak eğitim ve test veri setleri oluşturuldu (80/20 bölünme). Model performansı doğruluk, duyarlılık, özgüllük, F1 skoru ve ROC–AUC ile değerlendirildi.

Bulgular:
Katılımcıların %42,6’sında AHI ≥15 saptandı. En yüksek performans Random Forest modeliyle elde edildi (doğruluk %78,6; duyarlılık 0,95; özgüllük 0,81; F1 skoru 0,88; AUC 0,86). ESS ve BKI en güçlü belirleyiciler olup, yaş, boyun çevresi, sigara, hipertansiyon ve diyabet de katkı sağladı. Model, sınırlı kaynaklarda PSG önceliklendirmesi için pratik bir triyaj aracı olarak kullanılabilir.

Sonuç:
Makine öğrenimi modeli, yalnızca kolay erişilebilir klinik verilerle orta-ağır OSAS’ı yüksek doğrulukla öngörebilmiştir. Yüksek duyarlılığı ve klinik uygulanabilirliği, modelin erken risk sınıflandırmasında ve PSG kaynaklarının etkin kullanımında yardımcı olabileceğini göstermektedir.

Ethical Statement

Bu çalışma, Hitit Üniversitesi Klinik Araştırmalar Etik Kurulu tarafından onaylanmıştır (Tarih: 02/07/2025, Protokol No: 2025-135).

Supporting Institution

Bu çalışma için herhangi bir kurum veya kuruluştan mali destek alınmamıştır.

Thanks

Bu çalışmada veri toplama sürecine sağladıkları değerli katkılardan dolayı Prof. Dr. Duygu Özol ve Doç. Dr. Sema Saraç’a teşekkür ederiz.

References

  • Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687-698. doi:10.1016/S2213-2600 (19)30198-5
  • Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383(9918):736-747. doi:10.1016/S0140-6736(13)60734-5
  • Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046-1053. doi:10.1016/S01 40-6736(05)71141-7
  • McNicholas WT, Bonsigore MR; Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29(1):156-178. doi:10.1183/09031936.000274 06
  • Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006-1014. doi:10.1093/aje/kws342
  • Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479-504. doi:10.5664/jcsm.6506
  • Levy J, Álvarez D, Del Campo F, Behar JA. Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry. Nat Commun. 2023;14(1):4881. doi:10.1038/s41467-023-40604-3
  • Álvarez D, Cerezo-Hernández A, Crespo A, et al. A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow. Sci Rep. 2020;10(1):5332. doi:10.1038/s41598-020-62223-4
  • Tsai CY, Huang HT, Cheng HC, et al. Screening for obstructive sleep apnea risk by using machine learning approaches and anthropometric features. Sensors (Basel). 2022;22(22):8630. doi:10.3390/s22228630
  • Rosa JCFD, Peres A, Gasperin Júnior L, Martinez D, Fontanella V. Diagnostic accuracy of oximetry for obstructive sleep apnea: a study on older adults in a home setting. Clinics (Sao Paulo). 2021;76:e3056. doi:10. 6061/clinics/2021/e3056
  • Gutierrez-Tobal GC, Alvarez D, Crespo A, Del Campo F, Hornero R. Evaluation of machine-learning approaches to estimate sleep apnea severity from at-home oximetry recordings. IEEE J Biomed Health Inform. 2019;23(2):882-892. doi:10.1109/JBHI.2018.2823384
  • Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. doi:10.1016/j.smrv.2016.07.002
  • Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353(19):2034-2041. doi:10.1056/NEJMoa043104
  • Kim RD, Kapur VK, Redline-Bruch J, et al. An economic evaluation of home versus laboratory-based diagnosis of obstructive sleep apnea. Sleep. 2015;38(7):1027-1037. doi:10.5665/sleep.4804
  • Suri J, Suri TA. Review of the current status of home sleep apnea testing vis-à-vis in-lab polysomnography: is old still gold? Indian Journal of Sleep Medicine. 2023;17:99-102. doi:10.5005/jp-journals-10069-0106 “
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. doi:10.1023/A: 1010933404324
  • Kuhn M, Johnson K. Applied predictive modeling. New York: Springer; 2013. doi:10.1007/978-1-4614-6849-3

Predicting obstructive sleep apnea severity without polysomnography: a machine learning approach based on clinical and demographic features

Year 2026, Volume: 8 Issue: 1, 7 - 11, 06.01.2026
https://doi.org/10.38053/acmj.1801322

Abstract

Aims: Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper airway collapse during sleep, causing intermittent hypoxia and sleep fragmentation. Diagnosis depends on polysomnography (PSG), which is resource intensive and not always available. This study aimed to develop and validate a machine learning (ML) model to predict clinically significant OSA (apnea-hypopnea index [AHI]≥15) using only demographic, behavioral, symptomatic, and comorbidity data, without PSG-derived parameters.
Methods: A retrospective dataset of 1281 adults evaluated for suspected OSA was analyzed. Variables included age, sex, body-mass index (BMI), neck circumference, Epworth Sleepiness Scale (ESS), smoking status, and comorbidities such as hypertension and diabetes. Four algorithms Random Forest (RF), Gradient Boosting, Logistic Regression, and Support Vector Machine were trained and tested using an 80/20 split and five-fold cross-validation. Model performance was assessed by accuracy, recall, precision, F1-score, and ROC-AUC.
Results: Among 1281 participants, 42.6% had AHI≥15. The RF model achieved the best performance with 78.6% accuracy, 0.95 recall, 0.81 precision, 0.88 F1-score, and 0.86 ROC-AUC. ESS and BMI were the strongest predictors, followed by age, neck circumference, smoking, hypertension, and diabetes. The model effectively identified moderate-to-severe OSA cases, offering a practical triage tool for prioritizing PSG in resource-limited settings.
Conclusion: The ML model accurately predicted clinically significant OSA using only accessible clinical variables. Its high sensitivity and interpretability support potential integration into clinical workflows for efficient risk stratification and PSG allocation. Prospective multicenter validation is warranted.

Ethical Statement

The study was approved by the Hitit University Clinical Research Ethics Committee (Date: 02/07/2025, Protocol No: 2025-135).

Supporting Institution

The authors received no financial support from any institution or organization for this study.

Thanks

We would like to thank Prof. Dr. Duygu Özol and Assoc. Prof. Dr. Sema Saraç for their valuable support in data collection.

References

  • Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687-698. doi:10.1016/S2213-2600 (19)30198-5
  • Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383(9918):736-747. doi:10.1016/S0140-6736(13)60734-5
  • Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046-1053. doi:10.1016/S01 40-6736(05)71141-7
  • McNicholas WT, Bonsigore MR; Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29(1):156-178. doi:10.1183/09031936.000274 06
  • Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006-1014. doi:10.1093/aje/kws342
  • Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of sleep medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479-504. doi:10.5664/jcsm.6506
  • Levy J, Álvarez D, Del Campo F, Behar JA. Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry. Nat Commun. 2023;14(1):4881. doi:10.1038/s41467-023-40604-3
  • Álvarez D, Cerezo-Hernández A, Crespo A, et al. A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow. Sci Rep. 2020;10(1):5332. doi:10.1038/s41598-020-62223-4
  • Tsai CY, Huang HT, Cheng HC, et al. Screening for obstructive sleep apnea risk by using machine learning approaches and anthropometric features. Sensors (Basel). 2022;22(22):8630. doi:10.3390/s22228630
  • Rosa JCFD, Peres A, Gasperin Júnior L, Martinez D, Fontanella V. Diagnostic accuracy of oximetry for obstructive sleep apnea: a study on older adults in a home setting. Clinics (Sao Paulo). 2021;76:e3056. doi:10. 6061/clinics/2021/e3056
  • Gutierrez-Tobal GC, Alvarez D, Crespo A, Del Campo F, Hornero R. Evaluation of machine-learning approaches to estimate sleep apnea severity from at-home oximetry recordings. IEEE J Biomed Health Inform. 2019;23(2):882-892. doi:10.1109/JBHI.2018.2823384
  • Senaratna CV, Perret JL, Lodge CJ, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. doi:10.1016/j.smrv.2016.07.002
  • Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med. 2005;353(19):2034-2041. doi:10.1056/NEJMoa043104
  • Kim RD, Kapur VK, Redline-Bruch J, et al. An economic evaluation of home versus laboratory-based diagnosis of obstructive sleep apnea. Sleep. 2015;38(7):1027-1037. doi:10.5665/sleep.4804
  • Suri J, Suri TA. Review of the current status of home sleep apnea testing vis-à-vis in-lab polysomnography: is old still gold? Indian Journal of Sleep Medicine. 2023;17:99-102. doi:10.5005/jp-journals-10069-0106 “
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. doi:10.1023/A: 1010933404324
  • Kuhn M, Johnson K. Applied predictive modeling. New York: Springer; 2013. doi:10.1007/978-1-4614-6849-3
There are 17 citations in total.

Details

Primary Language English
Subjects Chest Diseases, Biomedical Diagnosis
Journal Section Research Article
Authors

Büşra Durak 0000-0002-2638-1513

Eren Ege Özol 0009-0004-2871-7414

Submission Date October 12, 2025
Acceptance Date October 30, 2025
Publication Date January 6, 2026
Published in Issue Year 2026 Volume: 8 Issue: 1

Cite

AMA Durak B, Özol EE. Predicting obstructive sleep apnea severity without polysomnography: a machine learning approach based on clinical and demographic features. Anatolian Curr Med J / ACMJ / acmj. January 2026;8(1):7-11. doi:10.38053/acmj.1801322

TR DİZİN ULAKBİM and International Indexes (1b)

Interuniversity Board (UAK) Equivalency:  Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show

Journal Indexes and Platforms: 

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.


The indexes of the journal's are;

18596


asos-index.png

f9ab67f.png

WorldCat_Logo_H_Color.png

      logo-large-explore.png

images?q=tbn:ANd9GcQgDnBwx0yUPRKuetgIurtELxYERFv20CPAUcPe4jYrrJiwXzac8rGXlzd57gl8iikb1Tk&usqp=CAU

index_copernicus.jpg


84039476_619085835534619_7808805634291269632_n.jpg





The platforms of the journal's are;

COPE.jpg

images?q=tbn:ANd9GcTbq2FM8NTdXECzlOUCeKQ1dvrISFL-LhxhC7zy1ZQeJk-GGKSx2XkWQvrsHxcfhtfHWxM&usqp=CAUicmje_1_orig.png


ncbi.png

ORCID_logo.pngimages?q=tbn:ANd9GcQlwX77nfpy3Bu9mpMBZa0miWT2sRt2zjAPJKg2V69ODTrjZM1nT1BbhWzTVPsTNKJMZzQ&usqp=CAU


images?q=tbn:ANd9GcTaWSousoprPWGwE-qxwxGH2y0ByZ_zdLMN-Oq93MsZpBVFOTfxi9uXV7tdr39qvyE-U0I&usqp=CAU






The
 
indexes/platforms of the journal are;

TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit 


Journal articles are evaluated as "Double-Blind Peer Review"

All articles published in this journal are licensed under a Creative Commons Attribution 4.0 International License (CC BY NC ND)