Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 4, 411 - 415, 27.10.2023
https://doi.org/10.38053/acmj.1341013

Abstract

Project Number

2021/81

References

  • Jakhotia S, Sivaprasad M, Shalini T, et al. Circulating levels of Hsp27 in microvascular complications of diabetes: prospects as a biomarker of diabetic nephropathy. J Diabetes Complications. 2018;32(2):221-225.
  • Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428-431.
  • Do DV, Han G, Abariga SA, Sleilati G, Vedula SS, Hawkins BS. Blood pressure control for diabetic retinopathy. Cochrane Database Syst Rev. 2023;3(3):CD006127.
  • Frank RN. Diabetic retinopathy and systemic factors. Middle East Afr J Ophthalmol. 2015;22(2):151-156.
  • Boss JD, Singh PK, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(12):5594-5603.
  • Sciacchitano S, Lavra L, Morgante A, et al. Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018;19(2):379.
  • Papaspyridonos M, McNeill E, de Bono JP, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28(3):433-440.
  • Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules. 2020;10(3):389.
  • Reichlin T, Hochholzer W, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54(1):60-68.
  • Katan M, Christ-Crain M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly. 2010;140:w13101.
  • Quadro L, Blaner WS, Salchow DJ, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999;18(17):4633-4644.
  • Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38.
  • Meeusen JW, Johnson JN, Gray A, et al. Soluble ST2 and galectin-3 in pediatric patients without heart failure. Clin Biochem. 2015;48(18):1337-1340.
  • Schindler EI, Szymanski JJ, Hock KG, Geltman EM, Scott MG. Short-and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clin Chem. 2016;62(2):360-366.
  • Baek JH, Kim SJ, Kang HG, et al. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology. 2015;156(1):147-156.
  • Pang J, Rhodes DH, Pini M, et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One. 2013;8(2):e57915.
  • Darrow AL, Shohet RV. Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes. Cardiovasc Diabetol. 2015;14:73.
  • Mendonça HR, Carvalho JNA, Abreu CA, et al. Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res. 2018;1700:126-137.
  • Jin QH, Lou YF, Li TL, Chen HH, Liu Q, He XJ. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chin Med J (Engl). 2013;126(11):2109-2115
  • Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112-119.
  • Zhu FX, Wu HL, Tu KS, Chen JX, Zhang M, Shi C. Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J Diabetes Complications. 2016;30(8):1566-1570.
  • Li B, Li N, Guo S, et al. The changing features of serum adropin, copeptin, neprilysin and chitotriosidase which are associated with vascular endothelial function in type 2 diabetic retinopathy patients. J Diabetes Complications. 2020;34(11):107686.
  • Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356-362.
  • Akbay E, Muslu N, Nayir E, Ozhan O, Kiykim A. Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. J Endocrinol Invest. 2010;33(10):725-729.
  • Malechka VV, Moiseyev G, Takahashi Y, Shin Y, Ma JX. Impaired rhodopsin generation in the rat model of diabetic retinopathy. Am J Pathol. 2017;187(10):2222-2231.
  • Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32(24):5103-5115.
  • Du M, Otalora L, Martin AA, et al. Transgenic mice overexpressing serum retinol-binding protein develop progressive retinal degeneration through a retinoid-independent mechanism. Mol Cell Biol. 2015;35(16):2771-2789.
  • Racz B, Petrukhin K. Efect of the advanced non-retinoid RBP4 antagonist on vascular permeability in the mouse diabetic retinopathy model. Investig Ophthalmol Vis Sci. 2017;58(8):5799.
  • Zhang C, Li K, Zhang J, et al. Relationship between retinol and risk of diabetic retinopathy: a case-control study. Asia Pac J Clin Nutr. 2019;28(3):607-613.
  • Sun W, Shi Y, Yang J, et al. Transthyretin and retinol-binding protein as discriminators of diabetic retinopathy in type 1 diabetes mellitus. Int Ophthalmol. 2022;42(4):1041-1049.

Does vitreous galactin-3, copeptin and retina binding protein-4 concentrations change in diabetic retinopathy?

Year 2023, Volume: 5 Issue: 4, 411 - 415, 27.10.2023
https://doi.org/10.38053/acmj.1341013

Abstract

Aims: This study aimed to investigate whether the concentrations of Galactin-3 (G-3), Copeptin (CP) and Retina Binding Protein-4 (RBP-4) are affected in the vitreous humor of patients with diabetic retinopathy (DR).
Methods: Thirty-six patients with diabetes mellitus (DM) were included in the study, consisting of 10 patients without DR and 26 patients with proliferative diabetic retinopathy (PDR). The control group comprised 15 patients who underwent vitrectomy for epiretinal membrane and macular hole surgeries. Vitreous CP, G-3, and RBP-4 concentrations were examined using the enzyme-linked immunosorbent assay (ELISA) method. The groups were compared internally
Results: We did not observe any significant differences in the concentrations of G-3, CP and RBP-4 in the vitreous humor between diabetic patients and the control group (p=0.56, p=0.65 and p=0.11, respectively). When comparing vitreous samples of diabetic subgroups with and without DR findings to the control group, no significant differences were detected (p=0.51, p=0.66, and p=0.19, respectively).
Conclusion: Our results indicate that the concentrations of G-3, CP, and RBP-4 in the vitreous humor remain unchanged in both diabetic patients and those with proliferative diabetic retinopathy (DRP).

Supporting Institution

Funds were provided by the Scientific Research Support Commission of Tokat Gaziosmanpaşa University.

Project Number

2021/81

References

  • Jakhotia S, Sivaprasad M, Shalini T, et al. Circulating levels of Hsp27 in microvascular complications of diabetes: prospects as a biomarker of diabetic nephropathy. J Diabetes Complications. 2018;32(2):221-225.
  • Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol. 2012;60(5):428-431.
  • Do DV, Han G, Abariga SA, Sleilati G, Vedula SS, Hawkins BS. Blood pressure control for diabetic retinopathy. Cochrane Database Syst Rev. 2023;3(3):CD006127.
  • Frank RN. Diabetic retinopathy and systemic factors. Middle East Afr J Ophthalmol. 2015;22(2):151-156.
  • Boss JD, Singh PK, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(12):5594-5603.
  • Sciacchitano S, Lavra L, Morgante A, et al. Galectin-3: one molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 2018;19(2):379.
  • Papaspyridonos M, McNeill E, de Bono JP, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28(3):433-440.
  • Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules. 2020;10(3):389.
  • Reichlin T, Hochholzer W, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54(1):60-68.
  • Katan M, Christ-Crain M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly. 2010;140:w13101.
  • Quadro L, Blaner WS, Salchow DJ, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999;18(17):4633-4644.
  • Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38.
  • Meeusen JW, Johnson JN, Gray A, et al. Soluble ST2 and galectin-3 in pediatric patients without heart failure. Clin Biochem. 2015;48(18):1337-1340.
  • Schindler EI, Szymanski JJ, Hock KG, Geltman EM, Scott MG. Short-and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clin Chem. 2016;62(2):360-366.
  • Baek JH, Kim SJ, Kang HG, et al. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology. 2015;156(1):147-156.
  • Pang J, Rhodes DH, Pini M, et al. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice. PLoS One. 2013;8(2):e57915.
  • Darrow AL, Shohet RV. Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes. Cardiovasc Diabetol. 2015;14:73.
  • Mendonça HR, Carvalho JNA, Abreu CA, et al. Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res. 2018;1700:126-137.
  • Jin QH, Lou YF, Li TL, Chen HH, Liu Q, He XJ. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chin Med J (Engl). 2013;126(11):2109-2115
  • Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112-119.
  • Zhu FX, Wu HL, Tu KS, Chen JX, Zhang M, Shi C. Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J Diabetes Complications. 2016;30(8):1566-1570.
  • Li B, Li N, Guo S, et al. The changing features of serum adropin, copeptin, neprilysin and chitotriosidase which are associated with vascular endothelial function in type 2 diabetic retinopathy patients. J Diabetes Complications. 2020;34(11):107686.
  • Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356-362.
  • Akbay E, Muslu N, Nayir E, Ozhan O, Kiykim A. Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. J Endocrinol Invest. 2010;33(10):725-729.
  • Malechka VV, Moiseyev G, Takahashi Y, Shin Y, Ma JX. Impaired rhodopsin generation in the rat model of diabetic retinopathy. Am J Pathol. 2017;187(10):2222-2231.
  • Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32(24):5103-5115.
  • Du M, Otalora L, Martin AA, et al. Transgenic mice overexpressing serum retinol-binding protein develop progressive retinal degeneration through a retinoid-independent mechanism. Mol Cell Biol. 2015;35(16):2771-2789.
  • Racz B, Petrukhin K. Efect of the advanced non-retinoid RBP4 antagonist on vascular permeability in the mouse diabetic retinopathy model. Investig Ophthalmol Vis Sci. 2017;58(8):5799.
  • Zhang C, Li K, Zhang J, et al. Relationship between retinol and risk of diabetic retinopathy: a case-control study. Asia Pac J Clin Nutr. 2019;28(3):607-613.
  • Sun W, Shi Y, Yang J, et al. Transthyretin and retinol-binding protein as discriminators of diabetic retinopathy in type 1 diabetes mellitus. Int Ophthalmol. 2022;42(4):1041-1049.
There are 30 citations in total.

Details

Primary Language English
Subjects Ophthalmology, Ophthalmology and Optometry (Other)
Journal Section Research Articles
Authors

Şerife Gülhan Konuk 0000-0003-4071-5193

Raşit Kılıç 0000-0001-6671-9067

Merve Çatak 0000-0003-2654-3911

Alper Güneş 0000-0001-9213-8805

Muzaffer Katar 0000-0002-6296-2390

Project Number 2021/81
Early Pub Date October 26, 2023
Publication Date October 27, 2023
Published in Issue Year 2023 Volume: 5 Issue: 4

Cite

AMA Konuk ŞG, Kılıç R, Çatak M, Güneş A, Katar M. Does vitreous galactin-3, copeptin and retina binding protein-4 concentrations change in diabetic retinopathy?. Anatolian Curr Med J / ACMJ / acmj. October 2023;5(4):411-415. doi:10.38053/acmj.1341013

TR DİZİN ULAKBİM and International Indexes (1b)

Interuniversity Board (UAK) Equivalency:  Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show

Journal Indexes and Platforms: 

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.


The indexes of the journal's are;

18596


asos-index.png

f9ab67f.png

WorldCat_Logo_H_Color.png

      logo-large-explore.png

images?q=tbn:ANd9GcQgDnBwx0yUPRKuetgIurtELxYERFv20CPAUcPe4jYrrJiwXzac8rGXlzd57gl8iikb1Tk&usqp=CAU

index_copernicus.jpg


84039476_619085835534619_7808805634291269632_n.jpg





The platforms of the journal's are;

COPE.jpg

images?q=tbn:ANd9GcTbq2FM8NTdXECzlOUCeKQ1dvrISFL-LhxhC7zy1ZQeJk-GGKSx2XkWQvrsHxcfhtfHWxM&usqp=CAUicmje_1_orig.png

cc.logo.large.png

ncbi.png

ORCID_logo.pngimages?q=tbn:ANd9GcQlwX77nfpy3Bu9mpMBZa0miWT2sRt2zjAPJKg2V69ODTrjZM1nT1BbhWzTVPsTNKJMZzQ&usqp=CAU


images?q=tbn:ANd9GcTaWSousoprPWGwE-qxwxGH2y0ByZ_zdLMN-Oq93MsZpBVFOTfxi9uXV7tdr39qvyE-U0I&usqp=CAU






The
 
indexes/platforms of the journal are;

TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit 


EBSCO, DOAJ, OAJI is under evaluation.

Journal articles are evaluated as "Double-Blind Peer Review"