Amaç: Bu çalışmanın amacı, epitelyal over kanseri tanısı alan hastalarda progresyonsuz sağkalımı (PFS) tahmin etmede yapay zeka tabanlı modellerin öngörü performansını değerlendirmek ve yorumlanabilir makine öğrenimi yaklaşımlarının karşılaştırmalı analizini yapmaktır.
Gereç ve Yöntem: Ocak 2015 ile Aralık 2020 tarihleri arasında Antalya Eğitim ve Araştırma Hastanesi Jinekolojik Onkoloji Anabilim Dalı'nda cerrahi müdahaleye alınan toplam 159 hasta retrospektif olarak çalışmaya dahil edildi. Sonuç analizi için klinik veriler kullanılmış ve kohort rastgele bir eğitim grubu (n = 117; %75) ve bir doğrulama grubu (n = 42; %25) olarak sınıflandırılmıştır. Çalışmamız için en popüler ve uygun olan sekiz algoritma modeli kullanılarak bir makine öğrenimi (ML) çalışması yapılmıştır. Modelin oluşturulması için gereken süre, ortalama mutlak hata, kök ortalama kare hata ve korelasyon katsayısı belirlendi.
Sonuçlar: Rastgele Orman algoritması en başarılı algoritma olarak ortaya çıktı. Bu algoritma, sonraki araştırmaların odak noktası oldu. Rastgele Orman algoritmasının korelasyon katsayısı 0,5731, ortalama mutlak hatası 16,45 ve kök ortalama kare hatası 20,98 idi. Modeli oluşturmak için gereken süre 0,03 saniyeydi. Kalan algoritmalar Doğrusal Regresyon, Bootstrap Aggregating (bagging), Additive Regression, Random Committee ve Regression by Discretization (Korelasyon Katsayıları: 0,5326, 0,4915, 0,4491, 0,4077, 0,3817) idi. En iyi performans gösteren Rastgele Orman algoritması için gerçek ve tahmin edilen PFS değerleri arasında orta düzeyde bir korelasyon gözlemlenmiştir (Korelasyon Katsayısı: 0,4-0,6), bu da tahminlerde orta düzeyde bir başarı oranına işaret etmektedir.
Aims: This study aimed to assess the predictive performance of artificial intelligence–based models in estimating progressionfree survival (PFS) in patients with epithelial ovarian cancer and to compare various interpretable machine learning approaches.
Methods: Between January 2015 and December 2020, a total of 167 patients who underwent surgical intervention at the Gynaecological Oncology Department of Antalya Training and Research Hospital were retrospectively included in the study if their data were complete. Clinical data were analysed, and the dataset was randomly divided into a training group (n=117; 75%) and a validation group (n=42; 25%). A machine learning (ML) analysis was conducted using the eight most relevant and widely applied algorithmic models for this study design. Model development time, mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient (CC) were evaluated.
Results: Random Forest demonstrated the highest accuracy (MAE=16.45, CC=0.571, RMSE=20.98, time=0.03) and thus became the focus of subsequent analyses. Other algorithms included Linear Regression, Bootstrap Aggregating, Additive Regression, Random Committee, and Regression by Discretization (CC=0.533, 0.492, 0.449, 0.408, and 0.382, respectively). For Random Forest, a moderate correlation was observed between actual and predicted PFS values (CC=0.4–0.6), indicating moderate predictive performance.
Conclusion: The findings of this study demonstrate that machine learning models, particularly Random Forest, can achieve moderate yet clinically relevant prognostic performance based on routinely collected clinical data. In particular, Random Forest demonstrates potential clinical value in guiding patient follow-up strategies and supporting individualized management in ovarian cancer, although further research is required to enhance its clinical validity and applicability.
Ethics Committee of Antalya Education and Research Hospital in Turkey (Approval No. 17/2; 7 November 2024)
NONE
NONE
Primary Language | English |
---|---|
Subjects | Gynecologic Oncology Surgery |
Journal Section | Research Articles |
Authors | |
Publication Date | September 15, 2025 |
Submission Date | July 25, 2025 |
Acceptance Date | September 8, 2025 |
Published in Issue | Year 2025 Volume: 7 Issue: 5 |
TR DİZİN ULAKBİM and International Indexes (1b)
Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]
Note: Our journal is not WOS indexed and therefore is not classified as Q.
You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show
Journal Indexes and Platforms:
TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.The indexes of the journal's are;
The platforms of the journal's are;
The indexes/platforms of the journal are;
TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit
Journal articles are evaluated as "Double-Blind Peer Review"
All articles published in this journal are licensed under a Creative Commons Attribution 4.0 International License (CC BY NC ND)