Oral Squamous Hücreli Karsinomlarda SLC2A3/NLRP3 Aksının miR-22 ve miR-30e Aracılı Düzenlenmesi
Year 2025,
Volume: 8 Issue: 3, 318 - 327, 22.10.2025
Gülçin Tezcan
,
Mustafa Aslıer
,
Özlem Saraydaroğlu
,
Hakan Coşkun
,
A. Alper Pampu
,
Hakkı Caner İnan
,
İlhan Kaya
,
Çağla Tekin
,
Melis Erçelik
,
Berrin Tunca
,
Adem Deligönül
Abstract
Amaç: Bu araştırma, baş ve boyun kanserlerinde, özellikle oral skuamöz hücreli karsinomada (OSCC), SLC2A3 ve NLRP3 genlerinin düzenlenmesini inceleyerek, bu genlerin tümör progresyonundaki katkılarını ve belirli miRNA'ların düzenleyici etkilerini araştırmaktadır.
Yöntem: HNSC’de SLC2A3 ve NLRP3 gen ekspresyonları, TCGA ve GTEx verileri ile GEPIA veritabanı kullanılarak analiz edilmiştir. Protein-protein etkileşimleri STRING veritabanı aracılığıyla tahmin edilmiş, miRNA-mRNA etkileşimleri ise miRDB kullanılarak incelenmiştir. RT-qPCR, OSCC’li 50 birey ve 6 sağlıklı kontrol grubundan elde edilen doku örneklerinde gen ekspresyonlarını analiz etmek için kullanılmış, miRNA seviyeleri TaqMan™ Advanced miRNA Assay kitleri ile ölçülmüştür. İstatistiksel analizler t-testleri, ANOVA ve Kaplan-Meier sağkalım analizi ile gerçekleştirilmiştir.
Bulgular: SLC2A3 seviyeleri, HNSC tümör örneklerinde kanser dışı dokulara kıyasla belirgin şekilde yüksek bulunmuş (p = 0.01) ve tümör evreleri ile birlikte ilerleyen bir artış göstermiştir (p = 0.0059). NLRP3 ekspresyonu, HNSC’de yüksek bulunmuş (p = 0.01), ancak tümör progresyonu ile anlamlı bir ilişki gösterilmemiştir. OSCC’de ise hem SLC2A3 hem de NLRP3 ekspresyonları tümör evresi ile birlikte artmış ve güçlü bir şekilde birbirleriyle korele olmuştur (p < 0.0001). Yüksek NLRP3 kötü sağkalım oranları ile ilişkilendirilmiştir (p = 0.0001). miR-22 ve miR-30e seviyeleri, tümör progresyonu ile azalmış ve kötü sağkalım ile ilişkilendirilmiştir (p <0.01).
Sonuç: SLC2A3 ve NLRP3, OSCC ve HNSC progresyonuna katkı sağlamaktadır ve bu etkiler HIF-1α yolu ile mediatör olabilir. miR-22 ve miR-30e bu genleri düzenler ve bu miRNA'ların kaybı, tümörün agresifliğini artırabilir, bu da OSCC için potansiyel terapötik hedefler sunmaktadır.
Project Number
TOA-2021-569
References
-
Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230(4):350-355.
-
Palsson-McDermott EM, O'Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35(11):965-973.
-
Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111-23115.
-
Zhang J, Gao J, Cui J, et al. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol. 2022;13:1026898.
-
Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242-E253.
-
Yao X, He Z, Qin C, et al. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int. 2020;20:503.
-
Chai F, Zhang J, Fu T, et al. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels (Austin). 2023;17(1):2208928.
-
Jiang W, Xu S, Li P. SLC2A3 promotes tumor progression through lactic acid-promoted TGF-β signaling pathway in oral squamous cell carcinoma. PLoS One. 2024;19(4):e0301724.
-
Ding Y, Yan Y, Dong Y, et al. NLRP3 promotes immune escape by regulating immune checkpoints: A pan-cancer analysis. Int Immunopharmacol. 2022;104:108512.
-
Han S, Jerome JA, Gregory AD, Mallampalli RK. Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res. 2017;18(1):2. doi:10.1186/s12931-016-0485-6
-
Li Z, Zhao M, Li J, et al. Elevated glucose metabolism driving pro-inflammatory response in B cells contributes to the progression of type 1 diabetes. Clin Immunol. 2023;255:109729.
-
Johnson AR, Freemerman AJ, Abel ED, Rathmell J, Makowski L. Glucose metabolism is linked to the inflammatory status of macrophages. BMC Proc. 2012;6(Suppl 3):P62. doi:10.1186/1753-6561-6-S3-P62
-
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218(Pt 1):71-79. doi:10.1242/jeb.106971
-
Karabegović I, Maas SCE, Shuai Y, et al. Smoking-related dysregulation of plasma circulating microRNAs: the Rotterdam study. Hum Genomics. 2023;17(1):61. doi:10.1186/s40246-023-00504-5
-
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin. 2019;12(1):65. doi:10.1186/s13072-019-0311-8
-
Hudder A, Novak RF. miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci. 2008;103(2):228-240.
-
Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22(6):425-438. doi:10.1038/s41580-021-00354-w
-
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol. 2019;1;10:451. doi:10.3389/fphar.2019.00451
-
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med. 2021 Dec 1;19(3):289-304.doi:10.20892/j.issn.2095-3941.2021.0294
-
Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One. 2013;8(5):e62589. doi:10.1371/journal.pone.0062589
-
Pakvisal N, Kongkavitoon P, Sathitruangsak C, et al. Differential expression of immune-regulatory proteins C5AR1, CLEC4A and NLRP3 on peripheral blood mononuclear cells in early-stage non-small cell lung cancer patients. Sci Rep. 2022;2;12(1):18439. doi:10.1038/s41598-022-21891-0.
-
Feng X, Luo Q, Wang H, Zhang H, Chen F. MicroRNA-22 suppresses cell proliferation, migration and invasion in oral squamous cell carcinoma by targeting NLRP3. J Cell Physiol. 2018;233(9):6705-6713. doi:10.1002/jcp.26331
-
Zhang S, Li G, Liu C, et al. miR-30e-5p represses angiogenesis and metastasis by directly targeting AEG-1 in squamous cell carcinoma of the head and neck. Cancer Sci. 2020;111(2):356-368. doi:10.1111/cas.14259
-
Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. Erratum in: Nat Rev Dis Primers. 2023;9(1):4.
-
Zha X, Hu Z, Ji S, et al. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett. 2015;359(1):97-106.
-
Jiang Q, Geng X, Warren J, et al. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience. 2020;448:126-139.
-
Lin J, Jiang L, Wang X, et al. P4HA2 promotes epithelial-to-mesenchymal transition and glioma malignancy through the collagen-dependent PI3K/AKT pathway. J Oncol. 2021;2021:1406853. doi:10.1155/2021/1406853
-
Korytina GF, Akhmadishina LZ, Markelov VA, et al. Role of PI3K/AKT/mTOR signaling pathway and sirtuin genes in chronic obstructive pulmonary disease development. Vavilovskii Zhurnal Genet Selektsii. 2023;27(5):512-521. doi:10.18699/VJGB-23-62
-
Mafi S, Ahmadi E, Meehan E, et al. The mTOR signaling pathway interacts with the ER stress response and the unfolded protein response in cancer. Cancer Res. 2023;83(15):2450-2460. doi:10.1158/0008-5472.CAN-22-3032
-
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? Front Oncol. 2022;12:819128. doi:10.3389/fonc.2022.819128
-
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):5120. doi:10.1038/s41467-020-18794-x
-
Aggarwal V, Sahoo S, Donnenberg VS, Chakraborty P, Jolly MK, Sant S. P4HA2: a link between tumor-intrinsic hypoxia, partial EMT and collective migration. Adv Cancer Biol Metastasis. 2022;5:100057. doi:10.1016/j.acme.2022.100057
-
Feng GX, Li J, Yang Z, et al. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene. 2017;36(50):6895-6905. doi:10.1038/onc.2017.277
-
Xu Y, Xia D, Huang K, Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J Transl Med. 2024;22(1):74. doi:10.1186/s12967-024-04493-z
-
Liu TF, McCall CE. Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer. 2013;4(3-4):135-147. doi:10.1177/1947601913486352
-
Chen H, Deng J, Gao H, et al. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal. 2023;21(1):185. doi:10.1186/s12964-023-01156-z
-
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget. 2017;8(1):1845-1859. doi:10.18632/oncotarget.12509
-
Zhang Z, Lowry SF, Guarente L, Haimovich B. Roles of SIRT1 in the acute and restorative phases following induction of inflammation. J Biol Chem. 2010;285(53):41391-41401. doi:10.1074/jbc.M110.133538
-
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med. 2023;55(9):1933-1944. doi:10.1038/s12276-023-01074-5
-
Lee DK, Kim T, Byeon J, et al. REDD1 promotes obesity-induced metabolic dysfunction via atypical NF-κB activation. Nat Commun. 2022;13(1):6303. doi:10.1038/s41467-022-34059-z
-
Galvani G, Leoni I, Monti E, et al. MiR-22 regulates HIF-1A pathway and tumor progression and represents a possible biomarker of sorafenib response in hepatocellular carcinoma. Dig Liver Dis. 2024;56(1):96-S97.
miR-22 and miR-30e Mediated Regulation of the SLC2A3/NLRP3 Axis in Oral Squamous Cell Carcinomas
Year 2025,
Volume: 8 Issue: 3, 318 - 327, 22.10.2025
Gülçin Tezcan
,
Mustafa Aslıer
,
Özlem Saraydaroğlu
,
Hakan Coşkun
,
A. Alper Pampu
,
Hakkı Caner İnan
,
İlhan Kaya
,
Çağla Tekin
,
Melis Erçelik
,
Berrin Tunca
,
Adem Deligönül
Abstract
Objective: This research explores the regulation of SLC2A3 and NLRP3 genes in cancers of the head and neck region, including oral squamous cell carcinoma (OSCC), focusing on their contribution to tumor progression and the regulatory effects of specific miRNAs.
Methods: SLC2A3 and NLRP3 gene expressions in HNSC were analyzed using the GEPIA database with TCGA and GTEx data. Protein-protein interactions were predicted via the STRING database, while miRNA-mRNA interactions were examined using miRDB. RT-qPCR was used to analyze gene expression in tissue samples obtained from 50 individuals with OSCC and 6 non-cancerous controls, while miRNA levels were measured using TaqMan™ Advanced miRNA Assays. Statistical analyses included t-tests, ANOVA, and Kaplan-Meier survival analysis.
Results: SLC2A3 levels were markedly elevated in HNSC tumor samples relative to non-cancerous tissues (p = 0.01) and showed a progressive increase with advancing tumor stages (p = 0.0059). NLRP3 expression was found to be higher in HNSC (p = 0.01) without any significant association with tumor progression. In OSCC, both SLC2A3 and NLRP3 expressions increased with tumor stage and were strongly correlated (p < 0.0001). Elevated NLRP3 was associated with reduced survival rates (p = 0.0001). miR-22 and miR-30e levels decreased with tumor progression and were linked to poor survival (p <0.01).
Conclusion: SLC2A3 and NLRP3 contribute to OSCC and HNSC progression, potentially mediated by the HIF-1α pathway. miR-22 and miR-30e regulate these genes, and their depletion may enhance tumor aggressiveness, representing potential therapeutic targets for OSCC.
Ethical Statement
The ethics approval for this study was received from the Clinical Research Ethics Committee of Bursa Uludağ University (2021-7/40).
Supporting Institution
Bursa Uludag University
Project Number
TOA-2021-569
References
-
Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230(4):350-355.
-
Palsson-McDermott EM, O'Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35(11):965-973.
-
Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111-23115.
-
Zhang J, Gao J, Cui J, et al. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol. 2022;13:1026898.
-
Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242-E253.
-
Yao X, He Z, Qin C, et al. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer. Cancer Cell Int. 2020;20:503.
-
Chai F, Zhang J, Fu T, et al. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels (Austin). 2023;17(1):2208928.
-
Jiang W, Xu S, Li P. SLC2A3 promotes tumor progression through lactic acid-promoted TGF-β signaling pathway in oral squamous cell carcinoma. PLoS One. 2024;19(4):e0301724.
-
Ding Y, Yan Y, Dong Y, et al. NLRP3 promotes immune escape by regulating immune checkpoints: A pan-cancer analysis. Int Immunopharmacol. 2022;104:108512.
-
Han S, Jerome JA, Gregory AD, Mallampalli RK. Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res. 2017;18(1):2. doi:10.1186/s12931-016-0485-6
-
Li Z, Zhao M, Li J, et al. Elevated glucose metabolism driving pro-inflammatory response in B cells contributes to the progression of type 1 diabetes. Clin Immunol. 2023;255:109729.
-
Johnson AR, Freemerman AJ, Abel ED, Rathmell J, Makowski L. Glucose metabolism is linked to the inflammatory status of macrophages. BMC Proc. 2012;6(Suppl 3):P62. doi:10.1186/1753-6561-6-S3-P62
-
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218(Pt 1):71-79. doi:10.1242/jeb.106971
-
Karabegović I, Maas SCE, Shuai Y, et al. Smoking-related dysregulation of plasma circulating microRNAs: the Rotterdam study. Hum Genomics. 2023;17(1):61. doi:10.1186/s40246-023-00504-5
-
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin. 2019;12(1):65. doi:10.1186/s13072-019-0311-8
-
Hudder A, Novak RF. miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci. 2008;103(2):228-240.
-
Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22(6):425-438. doi:10.1038/s41580-021-00354-w
-
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol. 2019;1;10:451. doi:10.3389/fphar.2019.00451
-
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med. 2021 Dec 1;19(3):289-304.doi:10.20892/j.issn.2095-3941.2021.0294
-
Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One. 2013;8(5):e62589. doi:10.1371/journal.pone.0062589
-
Pakvisal N, Kongkavitoon P, Sathitruangsak C, et al. Differential expression of immune-regulatory proteins C5AR1, CLEC4A and NLRP3 on peripheral blood mononuclear cells in early-stage non-small cell lung cancer patients. Sci Rep. 2022;2;12(1):18439. doi:10.1038/s41598-022-21891-0.
-
Feng X, Luo Q, Wang H, Zhang H, Chen F. MicroRNA-22 suppresses cell proliferation, migration and invasion in oral squamous cell carcinoma by targeting NLRP3. J Cell Physiol. 2018;233(9):6705-6713. doi:10.1002/jcp.26331
-
Zhang S, Li G, Liu C, et al. miR-30e-5p represses angiogenesis and metastasis by directly targeting AEG-1 in squamous cell carcinoma of the head and neck. Cancer Sci. 2020;111(2):356-368. doi:10.1111/cas.14259
-
Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. Erratum in: Nat Rev Dis Primers. 2023;9(1):4.
-
Zha X, Hu Z, Ji S, et al. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett. 2015;359(1):97-106.
-
Jiang Q, Geng X, Warren J, et al. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience. 2020;448:126-139.
-
Lin J, Jiang L, Wang X, et al. P4HA2 promotes epithelial-to-mesenchymal transition and glioma malignancy through the collagen-dependent PI3K/AKT pathway. J Oncol. 2021;2021:1406853. doi:10.1155/2021/1406853
-
Korytina GF, Akhmadishina LZ, Markelov VA, et al. Role of PI3K/AKT/mTOR signaling pathway and sirtuin genes in chronic obstructive pulmonary disease development. Vavilovskii Zhurnal Genet Selektsii. 2023;27(5):512-521. doi:10.18699/VJGB-23-62
-
Mafi S, Ahmadi E, Meehan E, et al. The mTOR signaling pathway interacts with the ER stress response and the unfolded protein response in cancer. Cancer Res. 2023;83(15):2450-2460. doi:10.1158/0008-5472.CAN-22-3032
-
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? Front Oncol. 2022;12:819128. doi:10.3389/fonc.2022.819128
-
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):5120. doi:10.1038/s41467-020-18794-x
-
Aggarwal V, Sahoo S, Donnenberg VS, Chakraborty P, Jolly MK, Sant S. P4HA2: a link between tumor-intrinsic hypoxia, partial EMT and collective migration. Adv Cancer Biol Metastasis. 2022;5:100057. doi:10.1016/j.acme.2022.100057
-
Feng GX, Li J, Yang Z, et al. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene. 2017;36(50):6895-6905. doi:10.1038/onc.2017.277
-
Xu Y, Xia D, Huang K, Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J Transl Med. 2024;22(1):74. doi:10.1186/s12967-024-04493-z
-
Liu TF, McCall CE. Deacetylation by SIRT1 reprograms inflammation and cancer. Genes Cancer. 2013;4(3-4):135-147. doi:10.1177/1947601913486352
-
Chen H, Deng J, Gao H, et al. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal. 2023;21(1):185. doi:10.1186/s12964-023-01156-z
-
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget. 2017;8(1):1845-1859. doi:10.18632/oncotarget.12509
-
Zhang Z, Lowry SF, Guarente L, Haimovich B. Roles of SIRT1 in the acute and restorative phases following induction of inflammation. J Biol Chem. 2010;285(53):41391-41401. doi:10.1074/jbc.M110.133538
-
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med. 2023;55(9):1933-1944. doi:10.1038/s12276-023-01074-5
-
Lee DK, Kim T, Byeon J, et al. REDD1 promotes obesity-induced metabolic dysfunction via atypical NF-κB activation. Nat Commun. 2022;13(1):6303. doi:10.1038/s41467-022-34059-z
-
Galvani G, Leoni I, Monti E, et al. MiR-22 regulates HIF-1A pathway and tumor progression and represents a possible biomarker of sorafenib response in hepatocellular carcinoma. Dig Liver Dis. 2024;56(1):96-S97.