Research Article
BibTex RIS Cite

Yüksek Glukoza Bağlı Vasküler Endotelyal Disfonksiyonda Resveratrolün Vazoprotektif Mekanizmaları: Bir in vitro Diyabet Modeli

Year 2025, Volume: 8 Issue: 3, 339 - 348, 22.10.2025
https://doi.org/10.53446/actamednicomedia.1736837

Abstract

Amaç: Diyabetes mellitus, mikro ve makrovasküler komplikasyonlarla ilişkili hiperglisemi ile karakterizedir. Bu çalışma, yüksek glukozun diyabetes mellitustaki vasküler endotelyal disfonksiyon (VED) mekanizmaları üzerindeki etkilerini bir in vitro diyabet modeli kullanarak değerlendirmeyi ve daha önce in vivo olarak vasküler yanıtları iyileştirdiği gösterilen resveratrolün, yüksek glukoz ortamında faydalı etkilerini hangi mekanizmalarla gösterdiğini aydınlatmayı amaçlamıştır.
Yöntem: İzole sıçan torasik aort halkaları, normal glukoz (NG), HG (44 mM), HG + 10 µM resveratrol (HG+Resv) veya yüksek sükroz (HS) tamponlarında 2 saat inkübe edildi. Endotele bağımlı (karbakol) ve -bağımsız (SNP) gevşeme ile fenilefrin (Phe) kaynaklı kasılma yanıtları değerlendirildi. Resveratrolün mekanizmalarını araştırmak için, endotele bağımlı gevşemeler, L-NAME, metilen mavisi, indometasin, tetraetilamonyum, glibenklamid ve 4-aminopiridin ile 2 saatlik inkübasyon sonrası ayrı ayrı kaydedildi.
Bulgular: KCl ve SNP'ye verilen yanıtlar tüm gruplarda benzerken, HG karbakol kaynaklı endotele bağımlı gevşemeyi anlamlı ölçüde bozdu ve Phe kaynaklı kasılmayı artırdı. Resveratrol ile birlikte inkübasyon, hem karbakol gevşemesini hem de Phe kasılmasını NG seviyelerine doğru anlamlı ölçüde düzeltti. HS inkübasyonu NG'ye benzer yanıtlar verdi, bu da bozulmuş gevşemenin hiperozmolaliteden bağımsız olduğunu gösterdi. Ayrıca, L-NAME ve metilen mavisi, HG+Resv grubundaki karbakol gevşemesini anlamlı ölçüde baskıladı; tetraetilamonyum ve 4-aminopiridin de benzer etki gösterdi. Buna karşılık, indometasin ve glibenklamidin anlamlı bir etkisi olmadı, bu da PGI2 ve KATP için sınırlı roller olduğunu düşündürdü.
Sonuç: Resveratrol, NO-sGC-cGMP yolunu modüle ederek ve KCa ile KV kanallarını aktive ederek yüksek glukoza bağlı VED'i önlerken, artan kasılma yanıtlarını da azaltmaktadır. Bu bulgular, resveratrolün diyabetik vasküler komplikasyonlara karşı potansiyel bir koruyucu ajan olduğunu vurgulamaktadır.

Project Number

The authors affirm that no financial resources or grants were obtained for the present study.

References

  • 1Oussama MN Khatib. Guidelines for the Prevention, Management and Care of Diabetes Mellitus. World Health Organization; 2006. Accessed January 30, 2025. https://applications.emro.who.int/dsaf/dsa664.pdf
  • TEMD Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu - 2024. 16th ed.; 2024. Accessed June 26, 2024. https://file.temd.org.tr/ Uploads/publications/guides/documents/diabetesmellitus2024.pdf
  • World Health Organization. Classification of Diabetes Mellitus. World Health Organization; 2019. Accessed January 30, 2025. https://iris.who.int/handle/10665/325182
  • Melendez-Ramirez LY, Richards RJ, Cefalu WT. Complications of Type 1 Diabetes. Endocrinol Metab Clin North Am. 2010;39(3):625-640. doi:10.1016/j.ecl.2010.05.009
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-820. doi:10.1038/414813a
  • Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet Lond Engl. 2006;368(9548):1681-1688. doi:10.1016/S0140-6736(06)69703-1
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26(2_suppl):25-32. doi:10.1177/2047487319878371
  • Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus – Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-2502. doi:10.1161/CIRCULATIONAHA.116.022194
  • Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. 2005;54(1):1-7. doi:10.2337/diabetes.54.1.1
  • Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349-1354. doi:10.2337/db08-0063
  • Williams SB, Goldfine AB, Timimi FK, et al. Acute Hyperglycemia Attenuates Endothelium-Dependent Vasodilation in Humans In Vivo. Circulation. 1998;97(17):1695-1701. doi:10.1161/01.CIR.97.17.1695
  • Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434-449. doi:10.1111/1753-0407.12521
  • Kara Z, Güven B, Onay Besikci A, Yıldırım N, Altunay H. Pleiotropic vascular effects of ivabradine in streptozotocin-induced diabetes. Eur J Pharmacol. 2022;916:174551. doi:10.1016/j.ejphar.2021.174551
  • Gocmez SS, Şahin TD, Yazir Y, et al. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol Behav. 2019;201:198-207. doi:10.1016/j.physbeh.2018.12.012
  • Wu N, Shen H, Liu H, Wang Y, Bai Y, Han P. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol. 2016;15(1):109. doi:10.1186/s12933-016-0427-0
  • Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009;11:e9. doi:10.1017/S146239940900101X
  • Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet Lond Engl. 1997;350 Suppl 1:SI9-13. doi:10.1016/s0140-6736(97)90022-2
  • Schafer A, Vogt C, Fraccarollo D, et al. Eplerenone improves vascular function and reduces platelet activation in diabetic rats. J Physiol Pharmacol. 2010;61(1):45-52.
  • Majithiya JB, Paramar AN, Balaraman R. Pioglitazone, a PPARgamma agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats. Cardiovasc Res. 2005;66(1):150-161. doi:10.1016/j.cardiores.2004.12.025
  • Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase. Circulation. 2002;106(13):1652-1658. doi:10.1161/01.CIR.0000029925.18593.5C
  • Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta BBA. 2015;1852(6):1155-1177. doi:10.1016/j.bbadis.2014.10.016
  • Parsamanesh N, Asghari A, Sardari S, et al. Resveratrol and endothelial function: A literature review. Pharmacol Res. 2021;170:105725. doi:10.1016/j.phrs.2021.105725
  • Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci. 2019;20(7):1523. doi:10.3390/ijms20071523
  • Phyu HE, Irwin JC, Vella RK, Fenning AS. Resveratrol shows neuronal and vascular-protective effects in older, obese, streptozotocin-induced diabetic rats. Br J Nutr. 2016;115(11):1911-1918. doi:10.1017/S0007114516001069
  • Tan CS, Loh YC, Tew WY, Yam MF. Vasorelaxant effect of 3,5,4’-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology. 2020;28(4):869-875. doi:10.1007/s10787-019-00682-6
  • Shen M, Zhao L, Wu R xin, Yue S qiang, Pei J ming. The vasorelaxing effect of resveratrol on abdominal aorta from rats and its underlying mechanisms. Vascul Pharmacol. 2013;58(1-2):64-70. doi:10.1016/j.vph.2012.07.005
  • Buluc M, Demirel-Yilmaz E. Resveratrol decreases calcium sensitivity of vascular smooth muscle and enhances cytosolic calcium increase in endothelium. Vascul Pharmacol. 2006;44(4):231-237. doi:10.1016/j.vph.2005.12.003
  • El-Awady MS, El-Agamy DS, Suddek GM, Nader MA. Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta. J Physiol Biochem. 2014;70(1):247-254. doi:10.1007/s13105-013-0299-7
  • Pektas MB, Turan O, Ozturk Bingol G, Sumlu E, Sadi G, Akar F. High glucose causes vascular dysfunction through Akt/eNOS pathway: reciprocal modulation by juglone and resveratrol. Can J Physiol Pharmacol. 2018;96(8):757-764. doi:10.1139/cjpp-2017-0639
  • Rakici O, Kiziltepe U, Coskun B, Aslamaci S, Akar F. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol. 2005;105(2):209-215. doi:10.1016/j.ijcard.2005.01.013
  • Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin Pharmacol Toxicol. 2006;99(5):360-364. doi:10.1111/j.1742-7843.2006.pto_531.x
  • Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J Off Publ Fed Am Soc Exp Biol. 2014;28(3):1317-1330. doi:10.1096/fj.13-235440
  • Landskroner EA, Tsai CSJ. Impact of ethanol as a vehicle for water-insoluble pollutants in BEAS-2B cell toxicity assays. Toxicol Mech Methods. Published online August 4, 2025:1-13. doi:10.1080/15376516.2025.2540457
  • Mathew TK, Zubair M, Tadi P. Blood Glucose Monitoring. In: StatPearls. StatPearls Publishing; 2025. Accessed February 4, 2025. http://www.ncbi.nlm.nih.gov/books/NBK555976/
  • Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet Lond Engl. 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9
  • Ahmad M, Turkseven S, Mingone CJ, Gupte SA, Wolin MS, Abraham NG. Heme oxygenase-1 gene expression increases vascular relaxation and decreases inducible nitric oxide synthase in diabetic rats. Cell Mol Biol Noisy--Gd Fr. 2005;51(4):371-376.
  • Ozer C, Gülen S, Dileköz E, Babül A, Ercan ZS. The effect of systemic leptin administration on aorta smooth muscle responses in diabetic rats. Mol Cell Biochem. 2006;282(1-2):187-191. doi:10.1007/s11010-006-1927-0
  • Akar F, Pektas MB, Tufan C, et al. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. Cardiovasc Drugs Ther. 2011;25(2):119-131. doi:10.1007/s10557-010-6255-7
  • Guo X, Liu WL, Chen LW, Guo ZG. High glucose impairs endothelium-dependent relaxation in rabbit aorta. Acta Pharmacol Sin. 2000;21(2):169-173.
  • Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res. 1997;34(1):145-156. doi:10.1016/s0008-6363(96)00237-4
  • Kamata K, Miyata N, Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989;97(2):614-618. doi:10.1111/j.1476-5381.1989.tb11993.x
  • Miike T, Kunishiro K, Kanda M, Azukizawa S, Kurahashi K, Shirahase H. Impairment of endothelium-dependent ACh-induced relaxation in aorta of diabetic db/db mice--possible dysfunction of receptor and/or receptor-G protein coupling. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):401-410. doi:10.1007/s00210-008-0261-3
  • Pieper GM. Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia. 1999;42(2):204-213. doi:10.1007/s001250051140
  • Utkan T, Yazir Y, Karson A, Bayramgurler D. Etanercept improves cognitive performance and increases eNOS and BDNF expression during experimental vascular dementia in streptozotocin-induced diabetes. Curr Neurovasc Res. 2015;12(2):135-146. doi:10.2174/1567202612666150311111340
  • Kadowitz PJ, Chapnick BM, Feigen LP, Hyman AL, Nelson PK, Spannhake EW. Pulmonary and systemic vasodilator effects of the newly discovered prostaglandin, PGI2. J Appl Physiol. 1978;45(3):408-413. doi:10.1152/jappl.1978.45.3.408
  • Zhang J, Zhang X, Li H, et al. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res. 2013;10(1):49-56. doi:10.1177/1479164112444639
  • Li H, Shin SE, Seo MS, et al. Alterations of ATP-sensitive K+ channels in human umbilical arterial smooth muscle during gestational diabetes mellitus. Pflugers Arch. 2018;470(9):1325-1333. doi:10.1007/s00424-018-2154-8
  • Li HF, Chen SA, Wu SN. Evidence for the stimulatory effect of resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells. Cardiovasc Res. 2000;45(4):1035-1045. doi:10.1016/s0008-6363(99)00397-1

Vasculoprotective Mechanisms of Resveratrol in High Glucose-Induced Vascular Endothelial Dysfunction: An in vitro Model of Diabetes

Year 2025, Volume: 8 Issue: 3, 339 - 348, 22.10.2025
https://doi.org/10.53446/actamednicomedia.1736837

Abstract

Objective: Diabetes mellitus is characterized by hyperglycemia, which is associated with micro- and macrovascular complications. This study aimed to evaluate the effects of high glucose on the mechanisms of vascular endothelial dysfunction (VED) in diabetes mellitus using an in vitro diabetes model, and to elucidate the mechanisms by which resveratrol, previously shown to improve vascular responses in vivo, exerts its beneficial effects in a high glucose environment.
Methods: Isolated rat thoracic aortic rings were incubated for 2 hours in normal glucose (NG), HG (44 mM), HG+10µM resveratrol (HG+Resv), or high sucrose (HS) buffers. Endothelium-dependent (carbachol) and -independent (SNP) relaxation, and phenylephrine (Phe)-induced contraction responses were assessed. To investigate the mechanisms of resveratrol, endothelium-dependent relaxations were recorded separately following a 2-hour incubation with L-NAME, methylene blue, indomethacin, tetraethylammonium, glibenclamide, and 4-aminopyridine.
Results: While responses to KCl and SNP were similar in all groups, HG significantly impaired carbachol-induced endothelium-dependent relaxation and enhanced Phe-induced contraction. Resveratrol co-incubation significantly restored both carbachol relaxation and Phe contraction towards NG levels. HS incubation yielded responses similar to NG, indicating impaired relaxation was independent of hyperosmolality. Furthermore, L-NAME and methylene blue significantly suppressed carbachol relaxation in the HG+Resv group, as did tetraethylammonium and 4-aminopyridine. Conversely, indomethacin and glibenclamide had no significant effect, suggesting limited roles for PGI2 and KATP.
Conclusion: Resveratrol prevents high glucose-induced VED by modulating the NO-sGC-cGMP pathway and activating KCa and KV channels, while also diminishing enhanced contractile responses. These findings highlight resveratrol's potential as a protective agent against diabetic vascular complications.

Ethical Statement

This study complies with the regulation on the welfare and protection of animals used for experiments and other scientific purposes, publicized in Turkey. Ethical approval was granted by the Kocaeli University Animal Experiments Local Ethics Committee with decision number 11/9-2017 and approval date 30/11/2017.

Project Number

The authors affirm that no financial resources or grants were obtained for the present study.

References

  • 1Oussama MN Khatib. Guidelines for the Prevention, Management and Care of Diabetes Mellitus. World Health Organization; 2006. Accessed January 30, 2025. https://applications.emro.who.int/dsaf/dsa664.pdf
  • TEMD Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve İzlem Kılavuzu - 2024. 16th ed.; 2024. Accessed June 26, 2024. https://file.temd.org.tr/ Uploads/publications/guides/documents/diabetesmellitus2024.pdf
  • World Health Organization. Classification of Diabetes Mellitus. World Health Organization; 2019. Accessed January 30, 2025. https://iris.who.int/handle/10665/325182
  • Melendez-Ramirez LY, Richards RJ, Cefalu WT. Complications of Type 1 Diabetes. Endocrinol Metab Clin North Am. 2010;39(3):625-640. doi:10.1016/j.ecl.2010.05.009
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-820. doi:10.1038/414813a
  • Yoon KH, Lee JH, Kim JW, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet Lond Engl. 2006;368(9548):1681-1688. doi:10.1016/S0140-6736(06)69703-1
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26(2_suppl):25-32. doi:10.1177/2047487319878371
  • Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus – Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-2502. doi:10.1161/CIRCULATIONAHA.116.022194
  • Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. 2005;54(1):1-7. doi:10.2337/diabetes.54.1.1
  • Ceriello A, Esposito K, Piconi L, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349-1354. doi:10.2337/db08-0063
  • Williams SB, Goldfine AB, Timimi FK, et al. Acute Hyperglycemia Attenuates Endothelium-Dependent Vasodilation in Humans In Vivo. Circulation. 1998;97(17):1695-1701. doi:10.1161/01.CIR.97.17.1695
  • Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434-449. doi:10.1111/1753-0407.12521
  • Kara Z, Güven B, Onay Besikci A, Yıldırım N, Altunay H. Pleiotropic vascular effects of ivabradine in streptozotocin-induced diabetes. Eur J Pharmacol. 2022;916:174551. doi:10.1016/j.ejphar.2021.174551
  • Gocmez SS, Şahin TD, Yazir Y, et al. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol Behav. 2019;201:198-207. doi:10.1016/j.physbeh.2018.12.012
  • Wu N, Shen H, Liu H, Wang Y, Bai Y, Han P. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol. 2016;15(1):109. doi:10.1186/s12933-016-0427-0
  • Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009;11:e9. doi:10.1017/S146239940900101X
  • Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet Lond Engl. 1997;350 Suppl 1:SI9-13. doi:10.1016/s0140-6736(97)90022-2
  • Schafer A, Vogt C, Fraccarollo D, et al. Eplerenone improves vascular function and reduces platelet activation in diabetic rats. J Physiol Pharmacol. 2010;61(1):45-52.
  • Majithiya JB, Paramar AN, Balaraman R. Pioglitazone, a PPARgamma agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats. Cardiovasc Res. 2005;66(1):150-161. doi:10.1016/j.cardiores.2004.12.025
  • Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase. Circulation. 2002;106(13):1652-1658. doi:10.1161/01.CIR.0000029925.18593.5C
  • Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta BBA. 2015;1852(6):1155-1177. doi:10.1016/j.bbadis.2014.10.016
  • Parsamanesh N, Asghari A, Sardari S, et al. Resveratrol and endothelial function: A literature review. Pharmacol Res. 2021;170:105725. doi:10.1016/j.phrs.2021.105725
  • Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci. 2019;20(7):1523. doi:10.3390/ijms20071523
  • Phyu HE, Irwin JC, Vella RK, Fenning AS. Resveratrol shows neuronal and vascular-protective effects in older, obese, streptozotocin-induced diabetic rats. Br J Nutr. 2016;115(11):1911-1918. doi:10.1017/S0007114516001069
  • Tan CS, Loh YC, Tew WY, Yam MF. Vasorelaxant effect of 3,5,4’-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology. 2020;28(4):869-875. doi:10.1007/s10787-019-00682-6
  • Shen M, Zhao L, Wu R xin, Yue S qiang, Pei J ming. The vasorelaxing effect of resveratrol on abdominal aorta from rats and its underlying mechanisms. Vascul Pharmacol. 2013;58(1-2):64-70. doi:10.1016/j.vph.2012.07.005
  • Buluc M, Demirel-Yilmaz E. Resveratrol decreases calcium sensitivity of vascular smooth muscle and enhances cytosolic calcium increase in endothelium. Vascul Pharmacol. 2006;44(4):231-237. doi:10.1016/j.vph.2005.12.003
  • El-Awady MS, El-Agamy DS, Suddek GM, Nader MA. Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta. J Physiol Biochem. 2014;70(1):247-254. doi:10.1007/s13105-013-0299-7
  • Pektas MB, Turan O, Ozturk Bingol G, Sumlu E, Sadi G, Akar F. High glucose causes vascular dysfunction through Akt/eNOS pathway: reciprocal modulation by juglone and resveratrol. Can J Physiol Pharmacol. 2018;96(8):757-764. doi:10.1139/cjpp-2017-0639
  • Rakici O, Kiziltepe U, Coskun B, Aslamaci S, Akar F. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol. 2005;105(2):209-215. doi:10.1016/j.ijcard.2005.01.013
  • Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin Pharmacol Toxicol. 2006;99(5):360-364. doi:10.1111/j.1742-7843.2006.pto_531.x
  • Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J Off Publ Fed Am Soc Exp Biol. 2014;28(3):1317-1330. doi:10.1096/fj.13-235440
  • Landskroner EA, Tsai CSJ. Impact of ethanol as a vehicle for water-insoluble pollutants in BEAS-2B cell toxicity assays. Toxicol Mech Methods. Published online August 4, 2025:1-13. doi:10.1080/15376516.2025.2540457
  • Mathew TK, Zubair M, Tadi P. Blood Glucose Monitoring. In: StatPearls. StatPearls Publishing; 2025. Accessed February 4, 2025. http://www.ncbi.nlm.nih.gov/books/NBK555976/
  • Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet Lond Engl. 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9
  • Ahmad M, Turkseven S, Mingone CJ, Gupte SA, Wolin MS, Abraham NG. Heme oxygenase-1 gene expression increases vascular relaxation and decreases inducible nitric oxide synthase in diabetic rats. Cell Mol Biol Noisy--Gd Fr. 2005;51(4):371-376.
  • Ozer C, Gülen S, Dileköz E, Babül A, Ercan ZS. The effect of systemic leptin administration on aorta smooth muscle responses in diabetic rats. Mol Cell Biochem. 2006;282(1-2):187-191. doi:10.1007/s11010-006-1927-0
  • Akar F, Pektas MB, Tufan C, et al. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. Cardiovasc Drugs Ther. 2011;25(2):119-131. doi:10.1007/s10557-010-6255-7
  • Guo X, Liu WL, Chen LW, Guo ZG. High glucose impairs endothelium-dependent relaxation in rabbit aorta. Acta Pharmacol Sin. 2000;21(2):169-173.
  • Pieper GM, Langenstroer P, Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res. 1997;34(1):145-156. doi:10.1016/s0008-6363(96)00237-4
  • Kamata K, Miyata N, Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989;97(2):614-618. doi:10.1111/j.1476-5381.1989.tb11993.x
  • Miike T, Kunishiro K, Kanda M, Azukizawa S, Kurahashi K, Shirahase H. Impairment of endothelium-dependent ACh-induced relaxation in aorta of diabetic db/db mice--possible dysfunction of receptor and/or receptor-G protein coupling. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):401-410. doi:10.1007/s00210-008-0261-3
  • Pieper GM. Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetologia. 1999;42(2):204-213. doi:10.1007/s001250051140
  • Utkan T, Yazir Y, Karson A, Bayramgurler D. Etanercept improves cognitive performance and increases eNOS and BDNF expression during experimental vascular dementia in streptozotocin-induced diabetes. Curr Neurovasc Res. 2015;12(2):135-146. doi:10.2174/1567202612666150311111340
  • Kadowitz PJ, Chapnick BM, Feigen LP, Hyman AL, Nelson PK, Spannhake EW. Pulmonary and systemic vasodilator effects of the newly discovered prostaglandin, PGI2. J Appl Physiol. 1978;45(3):408-413. doi:10.1152/jappl.1978.45.3.408
  • Zhang J, Zhang X, Li H, et al. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res. 2013;10(1):49-56. doi:10.1177/1479164112444639
  • Li H, Shin SE, Seo MS, et al. Alterations of ATP-sensitive K+ channels in human umbilical arterial smooth muscle during gestational diabetes mellitus. Pflugers Arch. 2018;470(9):1325-1333. doi:10.1007/s00424-018-2154-8
  • Li HF, Chen SA, Wu SN. Evidence for the stimulatory effect of resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells. Cardiovasc Res. 2000;45(4):1035-1045. doi:10.1016/s0008-6363(99)00397-1
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Cardiovascular Medicine and Haematology (Other)
Journal Section Research Articles
Authors

Gülşen Çelebi 0000-0002-3598-9520

Semil Selcen Göçmez 0000-0001-7341-4907

Ebru Serin 0000-0002-6103-6950

Muhammed Emin Emet 0009-0003-5427-7208

Tijen Utkan 0000-0001-5848-3680

Project Number The authors affirm that no financial resources or grants were obtained for the present study.
Publication Date October 22, 2025
Submission Date July 8, 2025
Acceptance Date October 16, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

AMA Çelebi G, Göçmez SS, Serin E, Emet ME, Utkan T. Yüksek Glukoza Bağlı Vasküler Endotelyal Disfonksiyonda Resveratrolün Vazoprotektif Mekanizmaları: Bir in vitro Diyabet Modeli. Acta Medica Nicomedia. October 2025;8(3):339-348. doi:10.53446/actamednicomedia.1736837

images?q=tbn:ANd9GcSZGi2xIvqKAAwnJ5TSwN7g4cYXkrLAiHoAURHIjzbYqI5bffXt&s

The articles in the Journal of "Acta Medica Nicomedia" are open access articles licensed under a Creative Commons Attribution-ShareAlike 4.0 International License at the web address https://dergipark.org.tr/tr/pub/actamednicomedia