Araştırma Makalesi
BibTex RIS Kaynak Göster

Sazan balıklarında (Cyprinus carpio L. 1758) fermente soya küspesi ile balık ununun yer değiştirmesinin büyüme, yem etkinliği, vücut kompozisyonu, yemde ve bağırsakta laktik asit bakteri miktarı üzerine etkileri

Yıl 2020, , 416 - 422, 01.09.2019
https://doi.org/10.22392/actaquatr.705215

Öz

Bu çalışma, peynir altı suyu ile fermente edilmiş soya küspesi içeren yemlerle sazan yavru balıklarını beslemenin büyüme performansı, vücut kompozisyonu, hepatosomatic indeks (HSİ) ve visserosomatik indeks (VSİ) üzerindeki etkilerini araştırmak için yapılmıştır. Fermente soya küspesi (FSM) sazan balıklarının (Cyprinus carpio) yemlerinde balık unu proteinini %10 (FSM10), %20 (FSM20), %30 (FSM30), %40 (FSM40) ve %50(FSM50)’si yerine kullanılmıştır. Kontrol yeminde fermente soya küspesi kullanılmamıştır. Yemler izonitrojenik ve izokalorik olarak hazırlanmıştır. Deneme de 18 adet akvaryum kullanılmıştır. Araştırmanın başında, her akvaryuma 30 balık (ortalam ağırlığı 1.66±0.14 g) konulmuş ve deneme 3 tekerrür yürütülmüştür. Denemenin sonunda, FSM20 grubu ile beslenen sazanlarda en yüksek ağırlık, ağırlık artışı ve spesifik büyüme oranı elde edilmiştir. Balık unu proteininin %50’si yerine fermente soya küspesi içeren yemlerle beslenen balıkların büyüme parametreleri ve yem dönüşüm oranları (FCR) kontrol yemiyle beslenen balıklarla benzer bulunmuştur. Tüm grupların vücut kompozisyonları, HIS ve VSI değerleri arasında istatiktiksel olarak önemli bir farklılık bulunmamıştır. Bununla birlikte, yemlerde fermente soya küspesi kullanımı ile bağırsaktaki laktik asit miktarı değişmemiştir. Bu deneme sonuçları, peynir altı suyu ile fermente edilmiş soya küspesinin, sazan yavru yemlerinde balık unu proteininin %50’sine kadar kullanılabileceğini göstermiştir.

Kaynakça

  • Anderson, R.L., & Wolf, W.R. (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition, 125, 581–588. AOAC 2002. Official methods of analysis of the association of official analytical chemists. Arlington, Virginia, USA.
  • Azarm, H.M., & Lee, S.M. (2012). Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquaculture Research, 45, 994-1003.
  • Barnes, M.E., Brown, M.L., Rosentrater , K.A., & Sewell, J.R. (2012). An initial investigation replacing fish meal with a commercial fermented soybean meal product in the diets of juvenile rainbow trout. Open Journal of Animal Sciences, 2, 234-243. Bligh, E.G., & Dyer, W.J. (1959). Rapid method of total lipid extraction and purification Canadian journal of biochemistry and physiology, 37, 911-917. Chen, Z.J., & Hardy, R.W. (2003). Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture. 218, 501–514.
  • Egounlety, M., & Aworh, O.C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56, 249-254.
  • Kilara, A. (1994). Whey protein functionality. in: hettiarachchy, n.s. and ziegler, g.r. (eds), protein functionality in food systems. New York: Marcel Dekker, 325-351.
  • Lin, H., Chen, X., Chen, S., Zhuojia, L., Huang, Z., Niu, J., & Lu, X. (2012). Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquaculture Research, 44, 151-156.
  • Liu, H., Zhu, X., Yang, Y., Han, D., Jin, J., & Xie, S. (2016). Effect of substitution of dietary fishmeal by soya bean meal on different sizes of gibel carp (Carassius auratus gibelio): nutrient digestibility, growth performance, body composition and morphometry. Aquaculture Nutrition, 22, 142-157.
  • Mondragón-Parada, M.E., Nájera-Martínez, M., Juárez-Ramírez, C., Galíndez-Mayer, J., Ruiz-Ordaz N. & Cristiani-Urbina, E. (2006). Lactic acid bacteria production from whey. Applied Biochemistry and Biotechnology, 134, 223-232.
  • Mukhopadhyay, N., & Ray, A. K. (1999). Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), Fingerlings. Aquaculture Nutrition, 5, 229–236.
  • National Research Council (NRC), (1993). Nutritional requirements of fish. National Academic Press., Washington, USA.
  • Nengas, I, Alexis, M.N., & Davies, S.J. (1996). Partial substitution of fishmeal with soybean meal products and derivatives in diets for the gilthead sea bream (Sparus aurata L Aquaculture Research, 27, 147–156.
  • Reeves, J.L. (1982). Whey and whey products in cheese and other dairy products proceedings on whey products. Illinois, USA: USDA, 126-130.
  • Refstie, S., Sahlström, S., Bråthen Baeverfjord, G., & Krogedal, P. (2005). Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture, 246, 331-345. Roy, T., Banerjee, G., Dan, S.K., Ghosh, P., & Ray, A.K. (2014). Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Labeo rohita (Hamilton), fingerlings after fermentation with two phytase-producing bacterial strains isolated from fish gut. Aquaculture International, 22, 633-652.
  • Rumsey, G.L., Siwicki, A.K., Anderson, D.P., & Bowser, P.R. (1994). Effect of soybean protein on serological response, non-specific defence mechanisms, growth, and protein utilization in rainbow trout. Veterinary Immunology and Immunopathology, 41, 323–339. Saha, S., & Ray, A.K. (2011). Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for Rohu, Labeo rohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains ısolated from fish gut. Turkish Journal of Fisheries and Aquatic Sciences, 11,199-207.
  • Sharma, A., & Kapoor, A.C. (1996). Effect of various types of fermentation on in vitro protein and starch digestibility of differently processed pearl millet. Food/Nahrung, 40, 142-145.
  • Shiau, S.Y., Lin, S.F., Yu, S.L., Lin, A.L., & Kwok, C.C. (1990). Defatted and full-fat soybean meal as partial replacements for fishmeal in tilapia (Oreochromis niloticus × O. aureus) diets at low protein level. Aquaculture, 86, 401-407.
  • Shiphrah, V.H., Sahu, S., Thakur, A.R., & Chaudhuri, S.R. (2013). Screening of bacteria for lactic acid production from whey water. American Journal of Biochemistry and Biotechnology, 9, 118-123. Smits, C.H.M., & Annison, G. (1996). Non starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. World's poultry science journal, 52, 203-221.
  • SPSS., 2000. SPSS for Windows Base System User’s Guide, release 10.0. Chicago.
  • Sripriya, G., Antony, U., Chandra, T.C. (1997). Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chemistry. 58, 345-350.
  • Sun, H., Tang, J.W., Yao, X.H., Wu, Y.F., Wang, X., Liu, Y., & Lou, B. (2015). Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquaculture, 446, 30-36.
  • Yasar, S., & Gok, M.S. (2014). Fattening performance of japanese quails (Coturnix coturnix japonica) fed on diets with high levels of dry fermented wheat, barley and oats grains in whey with citrus pomace. Bulletin UASVM Animal Sciences and Biotechnologies, 71, 51-62.
  • Yasar, S, Gok, M.S., & Gurbuz, Y. (2016). Performance of broilers fed raw or fermented and re-dried wheat, barley and oats grains. Turkish Journal of Veterinary and Animal Sciences, 40, 313-322. doi:10.3906/vet-1505-44
  • Yu, D.H., Gong, S.Y, Yuan, Y.C., Luo, Z, Lin, Y.C., & Li, Q. (2013). Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquaculture Research, 44, 388-394.
  • Zhou, F., Song, W., Shao, Q., Peng, X., Xiao, J., Hua, Y., Ng., & W.K. (2011). Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. Journal of the World Aquaculture Society, 42, 184-197.
  • Yigit, N.O., & Tulay, D. (2016). Use of fermented soybean meal with whey as a protein source for feeding juvenile tilapia (Oreochromis niloticus). The Israeli journal of aquaculture, 68, 1-7.

Effect of Partial Replacement of Fish Meal with Fermented Soybean Meal on Growth, Feed Efficiency, Body Composition, Amount of Lactic Acid Bacteria in Diet and Intestine in Carp (Cyprinus carpio L. 1758)

Yıl 2020, , 416 - 422, 01.09.2019
https://doi.org/10.22392/actaquatr.705215

Öz

This trial was conducted to determine the effects of feeding a diet containing fermented soybean meal with whey on growth performance, body composition, hepatosomatic index (HSI), and viscerosomatic index (VSI) of carp. Fermented soybean meal (FSM) was used to replace fish meal (FM) protein in diets for juvenile carp (Cyprinus carpio) at rates of 10% (FSM10), 20% (FSM20), 30% (FSM30), 40% (FSM40) and 50% (FSM50). The control diet contained no fermented soybean meal. All experimental diets were prepared as isonitrogenous and isocaloric. The feeding trial was conducted in 18 glass aquaria. At the beginning of the experiment, 30 fish (average weight 1.66±0.14 g) were randomly stocked into each aquarium with 3 replications per treatment. At the end of the experiment, the highest final weight, weight gain, and specific growth rate were obtained in carp fed with FSM20 group. However, growth parameters and feed conversion ratio (FCR) of fish fed with diets containing fermented soybean meal up to 50% of fish meal protein were similar to those of the fish fed the control diet. There were no significant differences between body compositions, HSI, and VSI of all groups. Fermentation with whey of soybean meal increased the number of lactic acid bacteria in diet. However, lactic acid bacteria levels in the intestine not changed with the use of fermented soybean meal in the diet. The results of this experiment were showed that fermented soybean meal with whey can be replaced by up to 50% of fish meal protein in diets for juvenile carp.

Kaynakça

  • Anderson, R.L., & Wolf, W.R. (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition, 125, 581–588. AOAC 2002. Official methods of analysis of the association of official analytical chemists. Arlington, Virginia, USA.
  • Azarm, H.M., & Lee, S.M. (2012). Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquaculture Research, 45, 994-1003.
  • Barnes, M.E., Brown, M.L., Rosentrater , K.A., & Sewell, J.R. (2012). An initial investigation replacing fish meal with a commercial fermented soybean meal product in the diets of juvenile rainbow trout. Open Journal of Animal Sciences, 2, 234-243. Bligh, E.G., & Dyer, W.J. (1959). Rapid method of total lipid extraction and purification Canadian journal of biochemistry and physiology, 37, 911-917. Chen, Z.J., & Hardy, R.W. (2003). Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture. 218, 501–514.
  • Egounlety, M., & Aworh, O.C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56, 249-254.
  • Kilara, A. (1994). Whey protein functionality. in: hettiarachchy, n.s. and ziegler, g.r. (eds), protein functionality in food systems. New York: Marcel Dekker, 325-351.
  • Lin, H., Chen, X., Chen, S., Zhuojia, L., Huang, Z., Niu, J., & Lu, X. (2012). Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquaculture Research, 44, 151-156.
  • Liu, H., Zhu, X., Yang, Y., Han, D., Jin, J., & Xie, S. (2016). Effect of substitution of dietary fishmeal by soya bean meal on different sizes of gibel carp (Carassius auratus gibelio): nutrient digestibility, growth performance, body composition and morphometry. Aquaculture Nutrition, 22, 142-157.
  • Mondragón-Parada, M.E., Nájera-Martínez, M., Juárez-Ramírez, C., Galíndez-Mayer, J., Ruiz-Ordaz N. & Cristiani-Urbina, E. (2006). Lactic acid bacteria production from whey. Applied Biochemistry and Biotechnology, 134, 223-232.
  • Mukhopadhyay, N., & Ray, A. K. (1999). Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), Fingerlings. Aquaculture Nutrition, 5, 229–236.
  • National Research Council (NRC), (1993). Nutritional requirements of fish. National Academic Press., Washington, USA.
  • Nengas, I, Alexis, M.N., & Davies, S.J. (1996). Partial substitution of fishmeal with soybean meal products and derivatives in diets for the gilthead sea bream (Sparus aurata L Aquaculture Research, 27, 147–156.
  • Reeves, J.L. (1982). Whey and whey products in cheese and other dairy products proceedings on whey products. Illinois, USA: USDA, 126-130.
  • Refstie, S., Sahlström, S., Bråthen Baeverfjord, G., & Krogedal, P. (2005). Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture, 246, 331-345. Roy, T., Banerjee, G., Dan, S.K., Ghosh, P., & Ray, A.K. (2014). Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Labeo rohita (Hamilton), fingerlings after fermentation with two phytase-producing bacterial strains isolated from fish gut. Aquaculture International, 22, 633-652.
  • Rumsey, G.L., Siwicki, A.K., Anderson, D.P., & Bowser, P.R. (1994). Effect of soybean protein on serological response, non-specific defence mechanisms, growth, and protein utilization in rainbow trout. Veterinary Immunology and Immunopathology, 41, 323–339. Saha, S., & Ray, A.K. (2011). Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for Rohu, Labeo rohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains ısolated from fish gut. Turkish Journal of Fisheries and Aquatic Sciences, 11,199-207.
  • Sharma, A., & Kapoor, A.C. (1996). Effect of various types of fermentation on in vitro protein and starch digestibility of differently processed pearl millet. Food/Nahrung, 40, 142-145.
  • Shiau, S.Y., Lin, S.F., Yu, S.L., Lin, A.L., & Kwok, C.C. (1990). Defatted and full-fat soybean meal as partial replacements for fishmeal in tilapia (Oreochromis niloticus × O. aureus) diets at low protein level. Aquaculture, 86, 401-407.
  • Shiphrah, V.H., Sahu, S., Thakur, A.R., & Chaudhuri, S.R. (2013). Screening of bacteria for lactic acid production from whey water. American Journal of Biochemistry and Biotechnology, 9, 118-123. Smits, C.H.M., & Annison, G. (1996). Non starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. World's poultry science journal, 52, 203-221.
  • SPSS., 2000. SPSS for Windows Base System User’s Guide, release 10.0. Chicago.
  • Sripriya, G., Antony, U., Chandra, T.C. (1997). Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chemistry. 58, 345-350.
  • Sun, H., Tang, J.W., Yao, X.H., Wu, Y.F., Wang, X., Liu, Y., & Lou, B. (2015). Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquaculture, 446, 30-36.
  • Yasar, S., & Gok, M.S. (2014). Fattening performance of japanese quails (Coturnix coturnix japonica) fed on diets with high levels of dry fermented wheat, barley and oats grains in whey with citrus pomace. Bulletin UASVM Animal Sciences and Biotechnologies, 71, 51-62.
  • Yasar, S, Gok, M.S., & Gurbuz, Y. (2016). Performance of broilers fed raw or fermented and re-dried wheat, barley and oats grains. Turkish Journal of Veterinary and Animal Sciences, 40, 313-322. doi:10.3906/vet-1505-44
  • Yu, D.H., Gong, S.Y, Yuan, Y.C., Luo, Z, Lin, Y.C., & Li, Q. (2013). Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquaculture Research, 44, 388-394.
  • Zhou, F., Song, W., Shao, Q., Peng, X., Xiao, J., Hua, Y., Ng., & W.K. (2011). Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. Journal of the World Aquaculture Society, 42, 184-197.
  • Yigit, N.O., & Tulay, D. (2016). Use of fermented soybean meal with whey as a protein source for feeding juvenile tilapia (Oreochromis niloticus). The Israeli journal of aquaculture, 68, 1-7.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Nalan Özgür Yigit 0000-0002-6109-9425

Emrullah Arafatoğlu 0000-0002-0343-1418

Sulhattin Yasar 0000-0001-9334-1303

Yayımlanma Tarihi 1 Eylül 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yigit, N. Ö., Arafatoğlu, E., & Yasar, S. (2019). Effect of Partial Replacement of Fish Meal with Fermented Soybean Meal on Growth, Feed Efficiency, Body Composition, Amount of Lactic Acid Bacteria in Diet and Intestine in Carp (Cyprinus carpio L. 1758). Acta Aquatica Turcica, 16(3), 416-422. https://doi.org/10.22392/actaquatr.705215