Research Article
BibTex RIS Cite

Türkiye İç Sularında Küçük Kapasiteli Gökkuşağı Alabalığı Kafes Yetiştiriciliği Karbon Ayak İzi Bakımından Sürdürülebilirdir

Year 2022, Volume: 18 Issue: 1, 131 - 145, 01.03.2022
https://doi.org/10.22392/actaquatr.1005447

Abstract

İklim değişikliği değerlendirme kriteri olarak karbon ayak izi CO2 eşdeğeri (KAİ, CO2e), su ürünleri yetiştiriciliğinin sera gazı emisyonuna yaptığı katkı bakımından sürdürülebilirliğinin değerlendirilmesinde kullanılır. Bu çalışmada, 49 ton/yıl kafes yetiştiriciliği proje kapasitesine sahip gökkuşağı alabalığı üretiminin üç yıllık KAİ değerleri hesaplanmıştır. Çiftliğin üç yıllık ortalama üretim kapasitesi 52,72%’dir. Harcanan toplam KAİ değeri, yem, genel yönetim, taşıma, makine ve ekipman için harcanan KAİ’nin toplamından oluşmuştur. Toplam KAİ değeri içinde karma diyet için harcanan KAİ, % 73,69 oranıyla en yüksek seviyede bulunmuştur. Toplam KAİ içinde ikinci en yüksek katkıyı % 13,08'lık pay ile genel yönetim oluşturmuştur ve bu katkıdaki dizel ve işçiliğin payı sırasıyla % 78,49 ve % 19,36 olarak bulunmuştur. Kg ve 1 000 balık başına harcanan toplam CF 1,13 ve 292,52 CO2e olarak hesaplanmıştır. Kg karkas, karkasta biriken Mcal enerji ve karkasta biriken gram protein başına harcanan KAİ değerleri sırasıyla 1,69, 1,48 ve 9,43 kg CO2e olarak bulunmuştur. Üretim döneminde harcanan her Mcal kültürel enerji başına düşen KAİ değeri 0,35 kg CO2e olarak tespit edilmiştir. Tüketilen karma diyetin toplam KAİ'sinin toplam canlı ağırlık kazancına bölünmesiyle tanımlanan FCRe için KAİ değeri 0.99 kg CO2e olarak hesaplanmıştır. Sonuçlar, düşük karbon yayan bir sektör olan su ürünleri yetiştiriciliğinin sürdürülebilir olduğunu ve insanların protein talebini karşılarken bu avantajın göz önünde bulundurulması gerektiğini göstermiştir.


Not: Bu makale için 19 Nisan 2002 tarihinde bir DÜZELTME yayınlanmıştır. Bakınız: Acta Aquatica Turcica, 2022, 18(2), 146-146. https://doi.org/10.22392/actaquatr.1103100

References

  • Alley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., ... & Zwiers, F. (2007). Climate change 2007: The physical science basis. Summary for policymakers, Intergovernmental Panel on Climate Change, Geneva. (Accessed 15 August 2021). https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf
  • Angel, D., Jokumsen, A. & Lembo, G. (2019). Aquaculture production systems and environmental interactions, 103-118pp. In: Organic Aquaculture Impacts and Future Developments, Lembo, G., Mente E. (Eds.), 192p. Springer, Gewerbestrasse. Switzerland.
  • Boyd, CE. (2013). Assessing the carbon footprint of aquaculture. Pond aquaculture often is carbon dioxide neutral. (Accessed 02 October 2021). https://www.globalseafood.org/advocate/assessing-carbon-footprint-of-aquaculture/
  • Boyd, C.E., D'Abramo, L.R., Glencross, B.D., Huyben, D.C., Juarez, L.M., Lockwood, G.S., McNevin, A.A., Tacon, A.G.J., Teletchea, F., Tomassa Jr, J.R., Tucker, C.S. & Valenti, W.C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633. https://doi.org/10.1111/jwas.12714
  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009). Climate change implications for fisheries and aquaculture. FAO Fisheries and aquaculture technical paper, 530, 212.
  • Diken, G. (2020). Antropojenik İklim Değişikliğinin Balıkçılık ve Su Ürünleri Üzerine Etki ve Yönetim Stratejilerine Genel Bir Bakış. Journal of Anatolian Environmental and Animal Sciences, 5(3), 295-303. https://doi.org/10.35229/jaes.718925
  • Diken, G., Köknaroğlu, H. & Can, İ. (2021). Cultural energy use and energy use efficiency of a small-scale rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage farm in the inland waters of Turkey: A case study from Karacaören-I Dam Lake. Aquaculture Studies, 21(1), 31-39. http://doi.org/10.4194/2618-6381-v21_1_04
  • FAO (2021). Food and Agriculture Organization of the United Nations. Fisheries and aquaculture department fishery statistical collections global aquaculture production. (Accessed 12 August 2021). http://www.fao.org/fishery/statistics/global-aquaculture-production/en
  • GDFA (2021). Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Fisheries and Aquaculture. Su ürünleri istatistikleri Ankara-2021. (Accessed 12 August 2021). https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikler/Su%20%C3%9Cr%C3%BCnleri%20Veri%20ve%20D%C3%B6k%C3%BCmanlar%C4%B1/Su-Urunleri-%C4%B0statistikleri-temmuz-2021-1.pdf
  • Henry, A.F., Elambo, N.G., Tah, J.H.M., Fabrice, O.E. & Blanche, M.M. (2014). Embodied energy and CO2 analyses of mud-brick and cement-block houses. AIMS’s Energy, 2(1), 18-40.
  • Henriksson, P.J.G., Tran, N., Mohan, C.V., Chan, C.Y., Rodriguez, U.P., Suri, S., Mateos, L.D., Utomo, N.B.P., Hall, S., Phillips, M.J. (2017). Indonesian aquaculture futures–Evaluating environmental and socioeconomic potentials and limitations. Journal of Cleaner Production, 162, 1482-1490. https://doi.org/10.1016/j.jclepro.2017.06.133
  • Hagos, K.W. (2012). Survey of resource use efficiency and estimation of carbon and water footprints in fish farming systems using life cycle analysis. University of Rhode Island. Kingston, USD, 225pp.
  • Hognes, E.S., Ziegler, F. & Sund, V. (2011). Carbon footprint and area use of farmed Norwegian salmon (SINTEF Fisheries and Aquaculture Report: A22673). http://hdl.handle.net/11250/2479729
  • Hu, Z., Wu, S., Ji, C., Zou, J., Zhou, Q. & S. Liu. (2016). A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environmental Science and Pollution Research, 23(2), 1505-1515. https://doi.org/10.1007/s11356-015-5383-9
  • IAFFD (2020). The International Aquaculture Feed Formulation Database. Feed ingredient composition database. (Accessed 8 April 2020). https://www.iaffd.com/feed.html?v=4.3
  • Kalıpcı, E., Başer, V., Türkmen, M., Nihal, G.E.N. Ç. & Cüce, H. (2021). Türkiye Kıyılarında Deniz Suyu Sıcaklık Değişiminin CBS ile Analizi ve Ekolojik Etkilerinin Değerlendirilmesi. Doğal Afetler ve Çevre Dergisi, 7(2), 278-288. https://doi.org/10.21324/dacd.829938
  • Kauffman, J.B., Bernardino, A.F., Ferreira T.O., Bolton, N.W., Gomes, L.E.D.O. & Nobrega, G.N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11):5530-5540. https://doi.org/10.1002/ece3.4079
  • Liu, Y., Rosten, T.W., Henriksen, K., Hognes, E.S., Summerfelt, S. & Vinci, B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12. https://doi.org/10.1016/j.aquaeng.2016.01.001
  • MacLeod, M. J., Hasan, M. R., Robb, D. H. & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-68231-8
  • MH (2017). Marine Harvest ASA. Salmon farming industry handbook 2017. (Accessed 02 October 2021). http://hugin.info/209/R/2103281/797821.pdf
  • Moe, A., Koehler-Munro, K., Bryan, R., Goddard, T. & Kryzanowksi, L. (2014, October). Multi-criteria decision analysis of feed formulation for laying hens. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA (pp. 8-10).
  • Mehrabi, Z., Firouzbakhsh, F., & Jafarpour, A. (2012). Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. Journal of animal physiology and animal nutrition, 96(3), 474-481. https://doi.org/10.1111/j.1439-0396.2011.01167.x
  • Nemry, F., Theunis, J., Brechet, T. & Lopez, P. (2001). Greenhouse gas emissions reduction and material flows. Institute Wallan, Federal Office for Scientific, Technical and Cultural Affairs, Belgium.
  • Nguyen, T.L.T., & Hermansen, J.E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied energy, 89(1), 254-261. https://doi.org/10.1016/j.apenergy.2011.07.023
  • Pelletier, N. & Tyedmers, P. (2007). Feeding farmed salmon: is organic better? Aquaculture, 272(1-4), 399-416. https://doi.org/10.1016/j.aquaculture.2007.06.024
  • Pernet, F. & Browman, H.I. (2021). The future is now: marine aquaculture in the anthropocene. ICES Journal of Marine Science, 78(1), 315–322. https://doi.org/10.1093/icesjms/fsaa248
  • Qi, Z., Gao, C., Na, H. & Ye, Z. (2018). Using forest area for carbon footprint analysis of typical steel enterprises in China. Resources, Conservation and Recycling, 132, 352-360. https://doi.org/10.1016/j.resconrec.2017.05.016
  • Raul, C., Pattanaik, S.S. & Prakash, S. (2020). Greenhouse Gas Emissions from Aquaculture Systems. World aquaculture, 57-61.
  • Robb, D.H., MacLeod, M., Hasan M.R. & Soto, D. (2017). Greenhouse gas emissions from aquaculture: a Life Cycle Assessment of three Asian systems. FAO Fisheries and Aquaculture Technical Paper 609, Rome.
  • Robertson, K., Symes, W. & Garnham, M. (2015). Carbon footprint of dairy goat milk production in New Zealand. Journal of dairy science, 98(7), 4279-4293. https://doi.org/10.3168/jds.2014-9104
  • Rotz, C.A., Montes, F. & Chianese, D.S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of dairy science, 93(3), 1266-1282. https://doi.org/10.3168/jds.2009-2162
  • Rotz, C.A., Asem-Hiablie, S., Place, S. & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural systems, 169, 1-13. https://doi.org/10.1016/j.agsy.2018.11.005
  • Shahid, S.A. & Behnassi, M. (2014). Climate change impacts in the Arab Region: review of adaptation and mitigation potential and practices 15-38pp. In: Vulnerability of Agriculture, Water and Fisheries to Climate Change: Toward Sustainable Adaptation Strategies, Behnassi, M., Ramachandran, G., Muteng’e M.S., Shelat, K.N. (Eds), 336p. Springer; Dordrecht, Nederland.
  • Sivakkumar, S.N., Shankar, D.S., Yahiyakhan, J., Venkatachalam, M.N., Shanmugam, D. & Mangottiri, V. (2020, November). A Sustainable Approach to the Prevalent Problems in Tactical Urban Construction of Temporary Structures. In IOP Conference Series: Materials Science and Engineering (Vol. 955, No. 1, p. 012013). IOP Publishing.
  • Sonesson, U., Davis, J. & Ziegler, F. (2010). Food production and emissions of greenhouse gases: an overview of the climate impact of different product groups.
  • Srinivasa Rao, Ch., Prabhakar, M., Maheswari, M., Srinivasa Rao, M., Sharma, K.L., Srinivas, K., Prasad, J.V.N.S., Rama Rao, C.A., Vanaja, M., Ramana, D.B.V., Gopinath, K.A., Subba Rao, A.V.M., Rejani, R., Bhaskar, S., Sikka A.K. & Alagusundaram, K. (2016). National Innovations in Climate Resilient Agriculture (NICRA), Research Highlights 2015-16. Central Research Institute for Dryland Agriculture, Hyderabad, India.
  • Swaminathan, M.S. (2012). Aquaculture and sustainable nutrition security in a warming planet, Keynote Address 1. In R.P. Subasinghe, J.R. Arthur, D.M. Bartley, S.S. De Silva, M. Halwart, N. Hishamunda, C.V. Mohan & P. Sorgeloos, eds. Farming the Waters for People and Food. Proceedings of the Global Conference on Aquaculture 2010, Phuket, Thailand. 22–25 September 2010. pp. 3–19. FAO, Rome and NACA, Bangkok.
  • Šulc, R. & Ditl, P. (2021). A technical and economic evaluation of two different oxygen sources for a small oxy-combustion unit. Journal of Cleaner Production, 309, 127427. https://doi.org/10.1016/j.jclepro.2021.127427 UN (2021). United Nations. Climate Action, What Is Climate Change? (Accessed 14 August 2021). https://www.un.org/en/climatechange/what-is-climate-change
  • Tatıl T. (2019). Bor mineralinin Gökkuşağı Alabalığının (Oncorhynchus mykiss) büyüme performansına ve besin kompozisyonuna etkileri. M.Sc. Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Vellinga, T.V., Blonk, H., Marinussen, M., Van Zeist, W.J. & Starmans, D.A.J. (2013). Methodology used in feedprint: a tool quantifying greenhouse gas emissions of feed production and utilization (No. 674). Wageningen UR Livestock Research.
  • Weidema, B.P., Thrane, M., Christensen, P., Schmidt, J. & Løkke, S. (2008). Carbon footprint: a catalyst for life cycle assessment?. Journal of industrial Ecology, 12(1), 3-6. https://doi.org/10.1111/j.1530-9290.2008.00005.x
  • Welker, T. L., Overturf, K., Abernathy, J., Barrows, F. T., & Gaylord, G. (2018). Optimization of dietary manganese for rainbow trout, Oncorhynchus mykiss, fed a plant‐based diet. Journal of the World Aquaculture Society, 49(1), 71-82. https://doi.org/10.1111/jwas.12447
  • Ziegler, F., Winther, U., Hognes, E.S., Emanuelsson, A., Sund, V. & Ellingsen, H. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology.Journal of Industrial Ecology, 1-12. https://doi.org/10.1111/jiec.13150

Small-Scale Rainbow Trout Cage Farm in the Inland Waters of Turkey is Sustainable in Terms of Carbon Footprint (kg CO2e)

Year 2022, Volume: 18 Issue: 1, 131 - 145, 01.03.2022
https://doi.org/10.22392/actaquatr.1005447

Abstract

As a climate change assessment criterion, carbon footprint CO2 equivalent (CF, CO2e) is used to evaluate the sustainability of aquaculture in terms of its contribution to greenhouse gas emissions. In this study, the three-year CF of rainbow trout production with a cage farming project capacity of 49 tonnes/year was calculated. The average production capacity of the farm for three years was 52.72 %. Total CF expended was the summation of CF expended on feed, general management, transportation, machinery, and equipment. CF expended on the consumed compound diet had the highest contribution to total CF with 73.69 %. The second highest contributor to total CF was general management with a share of 13.08 % and, of this amount, diesel and labor constituted 78.49 and 19.36 % of it, respectively. Total CF expended per kg and 1 000 fish was 1.13 and 292.52 kg CO2e. Mean values for CF expended per kg carcass, per Mcal energy deposited in the carcass, and per gram of protein deposited in carcass were 1.69, 1.48, and 9.43 kg CO2e, respectively. On average, CF expended per Mcal of cultural energy expended during production was 0.35 kg CO2e. The mean of CF of FCRe, defined as total CF of consumed compound diet divided by total liveweight gain was 0.99 kg CO2e. Results showed that aquaculture is a low carbon-emitting sector thus is sustainable and this advantage should be considered when meeting people’s protein demand.

Note: An ERRATUM was published on 19 April 2022 for this article. See Acta Aquatica Turcica, 2022, 18(2), 146-146. https://doi.org/10.22392/actaquatr.1103100

References

  • Alley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., ... & Zwiers, F. (2007). Climate change 2007: The physical science basis. Summary for policymakers, Intergovernmental Panel on Climate Change, Geneva. (Accessed 15 August 2021). https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf
  • Angel, D., Jokumsen, A. & Lembo, G. (2019). Aquaculture production systems and environmental interactions, 103-118pp. In: Organic Aquaculture Impacts and Future Developments, Lembo, G., Mente E. (Eds.), 192p. Springer, Gewerbestrasse. Switzerland.
  • Boyd, CE. (2013). Assessing the carbon footprint of aquaculture. Pond aquaculture often is carbon dioxide neutral. (Accessed 02 October 2021). https://www.globalseafood.org/advocate/assessing-carbon-footprint-of-aquaculture/
  • Boyd, C.E., D'Abramo, L.R., Glencross, B.D., Huyben, D.C., Juarez, L.M., Lockwood, G.S., McNevin, A.A., Tacon, A.G.J., Teletchea, F., Tomassa Jr, J.R., Tucker, C.S. & Valenti, W.C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633. https://doi.org/10.1111/jwas.12714
  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009). Climate change implications for fisheries and aquaculture. FAO Fisheries and aquaculture technical paper, 530, 212.
  • Diken, G. (2020). Antropojenik İklim Değişikliğinin Balıkçılık ve Su Ürünleri Üzerine Etki ve Yönetim Stratejilerine Genel Bir Bakış. Journal of Anatolian Environmental and Animal Sciences, 5(3), 295-303. https://doi.org/10.35229/jaes.718925
  • Diken, G., Köknaroğlu, H. & Can, İ. (2021). Cultural energy use and energy use efficiency of a small-scale rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage farm in the inland waters of Turkey: A case study from Karacaören-I Dam Lake. Aquaculture Studies, 21(1), 31-39. http://doi.org/10.4194/2618-6381-v21_1_04
  • FAO (2021). Food and Agriculture Organization of the United Nations. Fisheries and aquaculture department fishery statistical collections global aquaculture production. (Accessed 12 August 2021). http://www.fao.org/fishery/statistics/global-aquaculture-production/en
  • GDFA (2021). Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Fisheries and Aquaculture. Su ürünleri istatistikleri Ankara-2021. (Accessed 12 August 2021). https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikler/Su%20%C3%9Cr%C3%BCnleri%20Veri%20ve%20D%C3%B6k%C3%BCmanlar%C4%B1/Su-Urunleri-%C4%B0statistikleri-temmuz-2021-1.pdf
  • Henry, A.F., Elambo, N.G., Tah, J.H.M., Fabrice, O.E. & Blanche, M.M. (2014). Embodied energy and CO2 analyses of mud-brick and cement-block houses. AIMS’s Energy, 2(1), 18-40.
  • Henriksson, P.J.G., Tran, N., Mohan, C.V., Chan, C.Y., Rodriguez, U.P., Suri, S., Mateos, L.D., Utomo, N.B.P., Hall, S., Phillips, M.J. (2017). Indonesian aquaculture futures–Evaluating environmental and socioeconomic potentials and limitations. Journal of Cleaner Production, 162, 1482-1490. https://doi.org/10.1016/j.jclepro.2017.06.133
  • Hagos, K.W. (2012). Survey of resource use efficiency and estimation of carbon and water footprints in fish farming systems using life cycle analysis. University of Rhode Island. Kingston, USD, 225pp.
  • Hognes, E.S., Ziegler, F. & Sund, V. (2011). Carbon footprint and area use of farmed Norwegian salmon (SINTEF Fisheries and Aquaculture Report: A22673). http://hdl.handle.net/11250/2479729
  • Hu, Z., Wu, S., Ji, C., Zou, J., Zhou, Q. & S. Liu. (2016). A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environmental Science and Pollution Research, 23(2), 1505-1515. https://doi.org/10.1007/s11356-015-5383-9
  • IAFFD (2020). The International Aquaculture Feed Formulation Database. Feed ingredient composition database. (Accessed 8 April 2020). https://www.iaffd.com/feed.html?v=4.3
  • Kalıpcı, E., Başer, V., Türkmen, M., Nihal, G.E.N. Ç. & Cüce, H. (2021). Türkiye Kıyılarında Deniz Suyu Sıcaklık Değişiminin CBS ile Analizi ve Ekolojik Etkilerinin Değerlendirilmesi. Doğal Afetler ve Çevre Dergisi, 7(2), 278-288. https://doi.org/10.21324/dacd.829938
  • Kauffman, J.B., Bernardino, A.F., Ferreira T.O., Bolton, N.W., Gomes, L.E.D.O. & Nobrega, G.N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11):5530-5540. https://doi.org/10.1002/ece3.4079
  • Liu, Y., Rosten, T.W., Henriksen, K., Hognes, E.S., Summerfelt, S. & Vinci, B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12. https://doi.org/10.1016/j.aquaeng.2016.01.001
  • MacLeod, M. J., Hasan, M. R., Robb, D. H. & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-68231-8
  • MH (2017). Marine Harvest ASA. Salmon farming industry handbook 2017. (Accessed 02 October 2021). http://hugin.info/209/R/2103281/797821.pdf
  • Moe, A., Koehler-Munro, K., Bryan, R., Goddard, T. & Kryzanowksi, L. (2014, October). Multi-criteria decision analysis of feed formulation for laying hens. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA (pp. 8-10).
  • Mehrabi, Z., Firouzbakhsh, F., & Jafarpour, A. (2012). Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. Journal of animal physiology and animal nutrition, 96(3), 474-481. https://doi.org/10.1111/j.1439-0396.2011.01167.x
  • Nemry, F., Theunis, J., Brechet, T. & Lopez, P. (2001). Greenhouse gas emissions reduction and material flows. Institute Wallan, Federal Office for Scientific, Technical and Cultural Affairs, Belgium.
  • Nguyen, T.L.T., & Hermansen, J.E. (2012). System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied energy, 89(1), 254-261. https://doi.org/10.1016/j.apenergy.2011.07.023
  • Pelletier, N. & Tyedmers, P. (2007). Feeding farmed salmon: is organic better? Aquaculture, 272(1-4), 399-416. https://doi.org/10.1016/j.aquaculture.2007.06.024
  • Pernet, F. & Browman, H.I. (2021). The future is now: marine aquaculture in the anthropocene. ICES Journal of Marine Science, 78(1), 315–322. https://doi.org/10.1093/icesjms/fsaa248
  • Qi, Z., Gao, C., Na, H. & Ye, Z. (2018). Using forest area for carbon footprint analysis of typical steel enterprises in China. Resources, Conservation and Recycling, 132, 352-360. https://doi.org/10.1016/j.resconrec.2017.05.016
  • Raul, C., Pattanaik, S.S. & Prakash, S. (2020). Greenhouse Gas Emissions from Aquaculture Systems. World aquaculture, 57-61.
  • Robb, D.H., MacLeod, M., Hasan M.R. & Soto, D. (2017). Greenhouse gas emissions from aquaculture: a Life Cycle Assessment of three Asian systems. FAO Fisheries and Aquaculture Technical Paper 609, Rome.
  • Robertson, K., Symes, W. & Garnham, M. (2015). Carbon footprint of dairy goat milk production in New Zealand. Journal of dairy science, 98(7), 4279-4293. https://doi.org/10.3168/jds.2014-9104
  • Rotz, C.A., Montes, F. & Chianese, D.S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of dairy science, 93(3), 1266-1282. https://doi.org/10.3168/jds.2009-2162
  • Rotz, C.A., Asem-Hiablie, S., Place, S. & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural systems, 169, 1-13. https://doi.org/10.1016/j.agsy.2018.11.005
  • Shahid, S.A. & Behnassi, M. (2014). Climate change impacts in the Arab Region: review of adaptation and mitigation potential and practices 15-38pp. In: Vulnerability of Agriculture, Water and Fisheries to Climate Change: Toward Sustainable Adaptation Strategies, Behnassi, M., Ramachandran, G., Muteng’e M.S., Shelat, K.N. (Eds), 336p. Springer; Dordrecht, Nederland.
  • Sivakkumar, S.N., Shankar, D.S., Yahiyakhan, J., Venkatachalam, M.N., Shanmugam, D. & Mangottiri, V. (2020, November). A Sustainable Approach to the Prevalent Problems in Tactical Urban Construction of Temporary Structures. In IOP Conference Series: Materials Science and Engineering (Vol. 955, No. 1, p. 012013). IOP Publishing.
  • Sonesson, U., Davis, J. & Ziegler, F. (2010). Food production and emissions of greenhouse gases: an overview of the climate impact of different product groups.
  • Srinivasa Rao, Ch., Prabhakar, M., Maheswari, M., Srinivasa Rao, M., Sharma, K.L., Srinivas, K., Prasad, J.V.N.S., Rama Rao, C.A., Vanaja, M., Ramana, D.B.V., Gopinath, K.A., Subba Rao, A.V.M., Rejani, R., Bhaskar, S., Sikka A.K. & Alagusundaram, K. (2016). National Innovations in Climate Resilient Agriculture (NICRA), Research Highlights 2015-16. Central Research Institute for Dryland Agriculture, Hyderabad, India.
  • Swaminathan, M.S. (2012). Aquaculture and sustainable nutrition security in a warming planet, Keynote Address 1. In R.P. Subasinghe, J.R. Arthur, D.M. Bartley, S.S. De Silva, M. Halwart, N. Hishamunda, C.V. Mohan & P. Sorgeloos, eds. Farming the Waters for People and Food. Proceedings of the Global Conference on Aquaculture 2010, Phuket, Thailand. 22–25 September 2010. pp. 3–19. FAO, Rome and NACA, Bangkok.
  • Šulc, R. & Ditl, P. (2021). A technical and economic evaluation of two different oxygen sources for a small oxy-combustion unit. Journal of Cleaner Production, 309, 127427. https://doi.org/10.1016/j.jclepro.2021.127427 UN (2021). United Nations. Climate Action, What Is Climate Change? (Accessed 14 August 2021). https://www.un.org/en/climatechange/what-is-climate-change
  • Tatıl T. (2019). Bor mineralinin Gökkuşağı Alabalığının (Oncorhynchus mykiss) büyüme performansına ve besin kompozisyonuna etkileri. M.Sc. Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Vellinga, T.V., Blonk, H., Marinussen, M., Van Zeist, W.J. & Starmans, D.A.J. (2013). Methodology used in feedprint: a tool quantifying greenhouse gas emissions of feed production and utilization (No. 674). Wageningen UR Livestock Research.
  • Weidema, B.P., Thrane, M., Christensen, P., Schmidt, J. & Løkke, S. (2008). Carbon footprint: a catalyst for life cycle assessment?. Journal of industrial Ecology, 12(1), 3-6. https://doi.org/10.1111/j.1530-9290.2008.00005.x
  • Welker, T. L., Overturf, K., Abernathy, J., Barrows, F. T., & Gaylord, G. (2018). Optimization of dietary manganese for rainbow trout, Oncorhynchus mykiss, fed a plant‐based diet. Journal of the World Aquaculture Society, 49(1), 71-82. https://doi.org/10.1111/jwas.12447
  • Ziegler, F., Winther, U., Hognes, E.S., Emanuelsson, A., Sund, V. & Ellingsen, H. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology.Journal of Industrial Ecology, 1-12. https://doi.org/10.1111/jiec.13150
There are 43 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Gürkan Diken 0000-0002-3386-3676

Hayati Köknaroğlu 0000-0003-4725-5783

İsmail Can 0000-0003-1956-9873

Publication Date March 1, 2022
Published in Issue Year 2022 Volume: 18 Issue: 1

Cite

APA Diken, G., Köknaroğlu, H., & Can, İ. (2022). Small-Scale Rainbow Trout Cage Farm in the Inland Waters of Turkey is Sustainable in Terms of Carbon Footprint (kg CO2e). Acta Aquatica Turcica, 18(1), 131-145. https://doi.org/10.22392/actaquatr.1005447