Araştırma Makalesi
BibTex RIS Kaynak Göster

Mogan Gölü (Türkiye)’nde Sediment Tarama Etkinliğinin Sediment Üstü Su ve Sediment Gözenek Suyu Ağır Metalleri Bağlamında Değerlendirilmesi

Yıl 2022, Cilt: 18 Sayı: 1, 38 - 48, 01.03.2022
https://doi.org/10.22392/actaquatr.942961

Öz

Ötrofikasyon riski altındaki sucul sistemlerin rekreaktif değerlerinin de artırılmasına yönelik bir yönetim aracı olan dredging, Mogan Gölü’nde uygulanmıştır. Bu çalışmada Mogan Gölü’nde sediment tarama ertesi; a) Sediment üstü su (SÜS) ve sediment gözenek suyunda (SGS) ağır metal konsantrasyonlarının (Hg, As, Cd, Cr, Pb, Ni, Cu ve Zn), b) SGS’de bazı ağır metallerin (Cu, Ni, Pb, Zn) toksisitesinin belirlenmesi amaçlanmıştır. Bu amaçla 2020-Mayıs ve Kasım aylarında iki istasyondan (Özellikle maden işleme tesisleri ve evsel kaynaklı atık suların ulaştığı I. istasyon; Evsel, endüstriyel atıklar ile tarımsal faaliyet kaynaklı atık suların ulaştığı II. istasyon) SÜS ve SGS eldesi için de yüzey sedimentleri örneklenmiştir. Bulgular doğrultusunda; a) Çalışma periyodunca Zn en yüksek, Pb ise diğer metallere göre daha düşük değerlerde seyretmiştir. SÜS verileri ‘Su Kirliliği Kontrolü Yönetmeliğinde’ verilen limit değerler içerisinde bulunmuştur. SGS-Zn; mayıs-II. istasyonda (330.50±8.72 µg L-1) ve SGS-Cu; kasım-II. istasyonda (12.85±4.35µg L-1) pore water için önerilen (WQC) limit değerleri aşmıştır, b) SGS-Ni, Cu, Zn ve Pb’ya ilişkin IWCTU (Interstitial Water Criterion Toxic Units) ile NI değerleri, 1’den büyük bulunmadığı için, dört metal açısından gölde ciddi bir kirlenme olmadığı, ancak Zn’un toksik etki riskine sahip en potansiyel metal olduğu belirlenmiştir. Ayrıca toplam IWCTU ve NI verileri, mayıs ayında metallerin toksisite ve toksisite derecesinin arttığına işaret etmektedir. Mogan Gölü’nde genel olarak SGS-ağır metal konsantrasyonlarının SÜS’e ilişkin değerlerden daha yüksek saptanması, sedimentin metalleri kuvvetlice adsorbladığını ve tarama girişiminin en azından yüzey sedimentinin ağır metal düzeyleri bağlamında çok etkin olmadığını ortaya koymuştur.

Destekleyen Kurum

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

19L0447010

Teşekkür

Bu projenin (19L0447010) gerçekleştirilmesi için gerekli mali desteği sağlayan Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne şükranlarımızı sunarız.

Kaynakça

  • Akyürek, B., Duru, M., Sütçü, Y., Papak, İ., Şaroğlu, F., Pehlivan, N., Gönenç, O., Granit, S. & Yaşar, T. (1997). 1/100000 ölçekli Annotation Qualified Turkey Geology Maps. Ankara-F-15. MTA Yayınları, Ankara (in Turkish).
  • Anonymous. (2002). A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. Volume III. Interpretation of the Results of Sediment Quality Investigations. EPA-905-B02-001-C, USA.
  • Anonymous. (2004). Water Pollution Control Regulation. 31 December Friday date and 25687 numbered Offiicial Newspaper (in Turkish).
  • Anonymous. (2016). T.C. Ministry of Forest and Water Management, General Directorate of Water Management, Lakes and Wetlands Action Plan, 2016-2018, Ankara (in Turkish).
  • Benzer, S. Arslan., Uzal, H., Gül, N., & Yılmaz, M. (2013). Concentrations of metals in water, sediment and tissues of Cyprinus carpio L., 1758 from Mogan Lake (Turkey). Iranian Journal of Fisheries Sciences, 12, 1, 45-55.
  • Chen, M., Ding, S., Gao, S., Fu, Z., Tang, W., Wu, Y., Gong, M., Wang, D. & Wang, Y. (2019). Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. Science of the Total Environment, 665, 181–190. https://doi.org/10.1016/j.scitotenv.2019.02.057
  • Demir, A. N., Fakıoğlu, Ö., & Dural, B. (2014). Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turkish Journal of Botany, 38, 169-179. https://doi.org/10.3906/bot-1301-60
  • Eckert, W., Nishri, A., Parparova, R. (1997). Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study With Intact Sediment Cores. Water, Air and Soil Pollution, 99, 401-409.
  • Fan, Z. Wang, W., Tang, C., Li, Y., Wang, Z., Lin, S. & Zheng, F. (2019). Targeting remediation dredging by ecological risk assessment of heavy metals in lake sediment: a case study of Shitang Lake, China. Sustainability, 11, 1-10. https://doi.org/10.3390/su11247251
  • Hou, D. He, J. Lü, C. Ren L. Fan, Q. Wang, J. & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn Cd) in water and sediments from lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135-144. https://doi.org/10.1016/j.ecoenv.2013.03.012
  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils Sediments, 18, 624–639.https://doi.org/10.1007/s11368-017-1833-y
  • Küçükosmanoğlu, A. G. ve Filazi, A. (2020). Investigation of the metal pollution sources in Lake Mogan, Ankara, Turkey. Biological Trace Element Research, 198, 269–282. https://doi.org/10.1007/s12011-020-02031-z
  • Lourino-Cabana, B., Lesven, L., Charriau, A., & Billon, G. (2011). Potential risks of heavy metal toxicity in contaminated sediments of Deule River, Northern France. Journal of Hazardous Materials. 186, 2129-2137. https://doi.org/10.1016/j.jhazmat.2010.12.124ff.ffhal-00922441f
  • Machesky, M. L. Holm, T. R. & Shackleford, D. B. (2004). Concentrations and potential toxicity of metals and ammonia in peoria lake sediments and pore waters. Waste Management and Research Center A Division of the Illinois Department of Natural Resources, 103, 1-134.
  • Mwamburi, J., & Oloo, F. N. (1997). The distribution and concentration levels of trace metals in water and sediments of Lake Victoria, Kenya. African Journal of Tropical Hydrobiology and Fisheries, 7, 37-48. http://hdl.handle.net/1834/35499
  • Ni, Z., Zhang, L., Yu, S., Jiang, Z., Zhang, J., Wu, Y., Zhao, C., Liu, S., Zhou, C. & Huang, X. (2017). The pore water nutrient and heavy metal characteristics in sediment cores and their benthic in Daya Bay, South, China. Marine Pollution Bulletin. 124, 547-554. https://doi.org/10.1016/j.marpolbul.2017.07.069
  • Peng, J., Song,Y., Peng, Y., Cui, X. & Qiu, G. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640. https://doi.org/10.1016/j.jhazmat.2008.04.061
  • Peterson, SA. (2007). Lake restoration by sediment removal. Journal of the American Water Resources Association. 18, 3, 423-436. https://doi.org/10.1111/j.1752-1688.1982.tb00009.x
  • Pulatsü, S. & Topçu, A. (2015). Review of 15 years of research on sediment heavy metal contents and sediment nutrient release in inland aquatic ecosystems, Turkey. Journal of Water Resource and Protection, 7, 85-100. https://doi.org/10.4236/jwarp.2015.72007
  • Şeker, K. (2019). Investigation of sediment pore water heavy metal geochemistry in Deriner Dam Lake, Artvin, Turkey. Acta Aquatica Turcica. 15 (1), 60-67. https://doi.org/10.22392/egirdir.438914
  • Tang, W., Duan, S., Shan, B., Zhang, H., Zhang, W., Zhao, Y., & Zhang, C. (2016). Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin. Ecotoxicology and Environmental Safety. 127, 80-86. https://doi.org/10.1016/j.ecoenv.2016.01.013
  • Topçu, A. & Kaya, D. (2017). Ecological risk assessment and seasonal-spatial distribution of some trace elements from surface sediment:eutrophic-shallow Mogan Lake, Turkey. International Congress on Chemistry and Materials Science, 5-7. Ankara.
  • Van Den Berg, G. A. Meijers, G.A. Van Der Heijdt, L. & Zwolsman, J.G. (2001). Dredging-Related mobilisation of trace metals: A case study in the Netherlands. Water Research, 35, 8, 1979–1986. https://doi.org/10.1016/S0043-1354(00)00452-8
  • Zhang, L., Ni, Z., Wu, Y., Zhao, C., Liu, S. & Huang, X. (2020). Concentrations of porewater heavy metals, their benthic fluxes and the potential ecological risks in Daya Bay, South China. Marine Pollution Bulletin, 150, 1-10. https://doi.org/10.1016/j.marpolbul.2019.110808
  • Zhu, X., Shan, B., Tang W., Li, S. & Rong, N. (2016). Distributions, fluxes, and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, Environmental Science and Pollution Research, 23, 5516-5526. https://doi.org/10.1007/s11356-015-5709-7

Assessment of Sediment Dredging Effectiveness by Considering Overlying Water and Pore Water Heavy Metals in Lake Mogan, Turkey

Yıl 2022, Cilt: 18 Sayı: 1, 38 - 48, 01.03.2022
https://doi.org/10.22392/actaquatr.942961

Öz

Dredging, a practice intended to increase the recreational value of aquatic systems at risk of eutrophication, has been implemented in Lake Mogan. This study aimed to determine a) Heavy metal concentrations (Hg, As, Cd, Cr, Pb, Ni, Cu, and Zn) in the overlying water and sediment pore water, and b) Pore water toxicity levels of some of these metals (Cu, Ni, Pb, Zn) following dredging in Lake Mogan. Surface sediment samples were taken from two stations in the lake between May and November 2020 to obtain overlying water and pore water values. The first station was chosen specifically because it receives wastewater from mineral processing facilities and nearby households; and the second station. After all, it receives household and industrial waste and agricultural wastewater. The findings indicate that a) Zn had the highest concentrations during the study period, and Pb the lowest. Overlying water concentrations were found to be within the acceptable limits outlined by the “Water Quality Control Regulations”. Pore water Zn concentrations for May (330.50±8.72 µg L-1) and pore water Cu concentrations for November at the second station (12.85±4.35 µg L-1) were higher than the recommended WQC limits. b) Since no values greater than 1 were found in the pore water for IWCTU (Interstitial Water Criterion Toxic Units) and NI (Nemeraw index) values for Ni, Cu, Zn, and Pb, no serious levels of pollution were present for these four metals; however, Zn had the greatest potential risk of toxicity. Moreover, the total IWCTU and NI values indicate that both the toxicity of the metals and the degree thereof increased in May. The fact that pore water heavy metal concentrations in Lake Mogan were generally higher than those in the overlying water indicates strong metal adsorption in the sediment and suggests that, at least in terms of reducing surface sediment heavy metals, dredging activities in the lake are not very effective.

Proje Numarası

19L0447010

Kaynakça

  • Akyürek, B., Duru, M., Sütçü, Y., Papak, İ., Şaroğlu, F., Pehlivan, N., Gönenç, O., Granit, S. & Yaşar, T. (1997). 1/100000 ölçekli Annotation Qualified Turkey Geology Maps. Ankara-F-15. MTA Yayınları, Ankara (in Turkish).
  • Anonymous. (2002). A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. Volume III. Interpretation of the Results of Sediment Quality Investigations. EPA-905-B02-001-C, USA.
  • Anonymous. (2004). Water Pollution Control Regulation. 31 December Friday date and 25687 numbered Offiicial Newspaper (in Turkish).
  • Anonymous. (2016). T.C. Ministry of Forest and Water Management, General Directorate of Water Management, Lakes and Wetlands Action Plan, 2016-2018, Ankara (in Turkish).
  • Benzer, S. Arslan., Uzal, H., Gül, N., & Yılmaz, M. (2013). Concentrations of metals in water, sediment and tissues of Cyprinus carpio L., 1758 from Mogan Lake (Turkey). Iranian Journal of Fisheries Sciences, 12, 1, 45-55.
  • Chen, M., Ding, S., Gao, S., Fu, Z., Tang, W., Wu, Y., Gong, M., Wang, D. & Wang, Y. (2019). Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. Science of the Total Environment, 665, 181–190. https://doi.org/10.1016/j.scitotenv.2019.02.057
  • Demir, A. N., Fakıoğlu, Ö., & Dural, B. (2014). Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turkish Journal of Botany, 38, 169-179. https://doi.org/10.3906/bot-1301-60
  • Eckert, W., Nishri, A., Parparova, R. (1997). Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study With Intact Sediment Cores. Water, Air and Soil Pollution, 99, 401-409.
  • Fan, Z. Wang, W., Tang, C., Li, Y., Wang, Z., Lin, S. & Zheng, F. (2019). Targeting remediation dredging by ecological risk assessment of heavy metals in lake sediment: a case study of Shitang Lake, China. Sustainability, 11, 1-10. https://doi.org/10.3390/su11247251
  • Hou, D. He, J. Lü, C. Ren L. Fan, Q. Wang, J. & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn Cd) in water and sediments from lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135-144. https://doi.org/10.1016/j.ecoenv.2013.03.012
  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils Sediments, 18, 624–639.https://doi.org/10.1007/s11368-017-1833-y
  • Küçükosmanoğlu, A. G. ve Filazi, A. (2020). Investigation of the metal pollution sources in Lake Mogan, Ankara, Turkey. Biological Trace Element Research, 198, 269–282. https://doi.org/10.1007/s12011-020-02031-z
  • Lourino-Cabana, B., Lesven, L., Charriau, A., & Billon, G. (2011). Potential risks of heavy metal toxicity in contaminated sediments of Deule River, Northern France. Journal of Hazardous Materials. 186, 2129-2137. https://doi.org/10.1016/j.jhazmat.2010.12.124ff.ffhal-00922441f
  • Machesky, M. L. Holm, T. R. & Shackleford, D. B. (2004). Concentrations and potential toxicity of metals and ammonia in peoria lake sediments and pore waters. Waste Management and Research Center A Division of the Illinois Department of Natural Resources, 103, 1-134.
  • Mwamburi, J., & Oloo, F. N. (1997). The distribution and concentration levels of trace metals in water and sediments of Lake Victoria, Kenya. African Journal of Tropical Hydrobiology and Fisheries, 7, 37-48. http://hdl.handle.net/1834/35499
  • Ni, Z., Zhang, L., Yu, S., Jiang, Z., Zhang, J., Wu, Y., Zhao, C., Liu, S., Zhou, C. & Huang, X. (2017). The pore water nutrient and heavy metal characteristics in sediment cores and their benthic in Daya Bay, South, China. Marine Pollution Bulletin. 124, 547-554. https://doi.org/10.1016/j.marpolbul.2017.07.069
  • Peng, J., Song,Y., Peng, Y., Cui, X. & Qiu, G. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640. https://doi.org/10.1016/j.jhazmat.2008.04.061
  • Peterson, SA. (2007). Lake restoration by sediment removal. Journal of the American Water Resources Association. 18, 3, 423-436. https://doi.org/10.1111/j.1752-1688.1982.tb00009.x
  • Pulatsü, S. & Topçu, A. (2015). Review of 15 years of research on sediment heavy metal contents and sediment nutrient release in inland aquatic ecosystems, Turkey. Journal of Water Resource and Protection, 7, 85-100. https://doi.org/10.4236/jwarp.2015.72007
  • Şeker, K. (2019). Investigation of sediment pore water heavy metal geochemistry in Deriner Dam Lake, Artvin, Turkey. Acta Aquatica Turcica. 15 (1), 60-67. https://doi.org/10.22392/egirdir.438914
  • Tang, W., Duan, S., Shan, B., Zhang, H., Zhang, W., Zhao, Y., & Zhang, C. (2016). Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin. Ecotoxicology and Environmental Safety. 127, 80-86. https://doi.org/10.1016/j.ecoenv.2016.01.013
  • Topçu, A. & Kaya, D. (2017). Ecological risk assessment and seasonal-spatial distribution of some trace elements from surface sediment:eutrophic-shallow Mogan Lake, Turkey. International Congress on Chemistry and Materials Science, 5-7. Ankara.
  • Van Den Berg, G. A. Meijers, G.A. Van Der Heijdt, L. & Zwolsman, J.G. (2001). Dredging-Related mobilisation of trace metals: A case study in the Netherlands. Water Research, 35, 8, 1979–1986. https://doi.org/10.1016/S0043-1354(00)00452-8
  • Zhang, L., Ni, Z., Wu, Y., Zhao, C., Liu, S. & Huang, X. (2020). Concentrations of porewater heavy metals, their benthic fluxes and the potential ecological risks in Daya Bay, South China. Marine Pollution Bulletin, 150, 1-10. https://doi.org/10.1016/j.marpolbul.2019.110808
  • Zhu, X., Shan, B., Tang W., Li, S. & Rong, N. (2016). Distributions, fluxes, and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, Environmental Science and Pollution Research, 23, 5516-5526. https://doi.org/10.1007/s11356-015-5709-7
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Arzu Binici 0000-0002-8212-3615

Serap Pulatsü 0000-0001-5277-417X

Proje Numarası 19L0447010
Yayımlanma Tarihi 1 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 18 Sayı: 1

Kaynak Göster

APA Binici, A., & Pulatsü, S. (2022). Assessment of Sediment Dredging Effectiveness by Considering Overlying Water and Pore Water Heavy Metals in Lake Mogan, Turkey. Acta Aquatica Turcica, 18(1), 38-48. https://doi.org/10.22392/actaquatr.942961

Cited By