Research Article
BibTex RIS Cite

Tiazolidin’in Zebra Balığı (Danio rerio) Solungaç ve Karaciğer Dokusunda AChE Enzim Aktivitesi ve Toplam Protein Seviyesi Üzerine Etkileri

Year 2022, Volume: 18 Issue: 2, 179 - 186, 01.06.2022
https://doi.org/10.22392/actaquatr.1001378

Abstract

Bu çalışmanın amacı, tiazolidin’in (Tiazolidin-4-karboksilik asit (4S)-2- (4-hidroksi-3-metoksifenil) zebra balığı (Danio rerio) solungaç ve karaciğer dokusunda asetilkolinesteraz enzim (AChE) aktivitesi ve total protein (TP) düzeyleri üzerindeki etkilerinin araştırılmasıdır. Zebra balıkları tiazolidin’in 0,2 ppm, 0,4 ppm ve 0,6 ppm farklı dozlarına 96 saat süreyle maruz bırakılmıştır. AChE enzim aktivitesi karaciğer dokusunda, tiazolidin’in 0,2 ppm, 0,4 ppm ve 0,6 ppm doz gruplarında, kontrol grubuna oranla artmıştır. Solungaç dokusunda ise, tiazolidin’in 0,2 ppm, 0,4 ppm ve 0,6 ppm doz gruplarında, kontrol grubuna oranla AChE enzim aktivitesinin azaldığı görülmüştür. Total protein seviyesi karaciğer dokusunda, tiazolidin’in 0,2 ppm, 0,4 ppm ve 0,6 ppm doz gruplarında, kontrol grubuna oranla azalmıştır. Solungaç dokusunda ise, tiazolidin’in 0,2 ppm, 0,4 ppm ve 0,6 ppm doz gruplarında, kontrol grubuna oranla total protein seviyelerinin önemli sayılabilecek oranda arttığı görülmüştür. Sonuç olarak, bu araştırmada tiazolidinin zebra balığı solungaç ve karaciğer dokuları üzerinde az da olsa zararlı etkilere neden olabileceği görülmüştür.

Supporting Institution

Sakarya Üniversitesi, BAPKO

Project Number

Proje No 2014-02-20-002

Thanks

Bu çalışma Sakarya Üniversitesi Bilimsel Araştırma Komisyonu tarafından desteklenmiştir (Proje No 2014-02-20-002). Yazarlar herhangi bir çıkar çatışması beyan etmemiştir.

References

  • Ahkin Chin Tai, J.K., & Freeman, J.L. (2020). Zebrafish as an integrative vertebrate model to identify mRNA mechanisms regulating toxicity. Toxicology Reports, 7, 559-570, 10.1016/j.toxrep.2020.03.010.
  • Akbulut, C., Öztürk, B., Genc, H., Zengin, M., & Yön, N.D. (2017). Developmental Toxicity of (4S)-2- (4-hydroxy-3-methoxyphenyl) thiazolidine-4-carboxylic acid in Zebrafish (Danio rerio). Biological and Applied Sciences. Brazilian Archieves of Biology and Technology, 60, e17160547. http://dx.doi.org/10.1590/1678-4324-2017160547
  • Altan, N., Dinçel, S. A., & Koca, C. (2006). Diabetes mellitus ve oksidatif stres. Türk Biyokimya Dergisi, 31(2): 51-56.
  • Bhoot DP, Khunt RC, Sankhavara VK., & Parekh HH. (2006). Synthesis of Some New Heterocyclic Compounds with Potential Biological Activity. Journal of Sciences, 17(4): 323-325. Corpus ID: 86201453.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-250.
  • Chen, X., Teng, M., Zhang, J., Qian, L., Duan, M., Cheng, Y., Zhao, F., Zheng, J., & Wang, C. (2020). Tralopyril induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. Science of the Total Environment, 746: 141860. https://doi.org/10.1016/j.scitotenv.2020.141860
  • Çapkın, E. (2011). Effects of carbosulfan on erythrocyte acetylcholinesterase (AChE) activities of rainbow trout (Oncorhyncus mykiss)). Journal of Fisheries Sciences, 5 (3), 240-249. https://doi.org/10.3153/jfscom.2011028
  • Dai, YJ., Jia, YF., Chen, N., Bian, WP., Li, QK., Ma, YB., Chen, YL., & Pei, DS. (2014). Zebrafish as a model system to study toxicology. Environmental Toxicology and Chemistry, 33(1): 11-17. doi: https://doi.org/10.1002/etc.2406
  • Ellman, G. L., Courtney, K. D., Andes, V., & Featherstone, R. M. (1961). A new rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-92.
  • Fırat, Ö., Cogun, H. Y., Aslanyavrusu, S., & Kargın, F. (2009). Antioxidant responses and metal accumulation in tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. Journal of Applied Toxicology, 29, 295-301. https://doi.org/10.1002/jat.1406
  • Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
  • Fu, J., Tan, Y.X.R., Gong, Z., & Bae, S. (2020). The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos. Ecotoxicology and Environmental Safety, 189. https://doi.org/10.1016/j.ecoenv.2019.110039
  • Guarda VLM, Pereira MA, De Simone CA, Albuquerque JFC, Galdino SL., & Chantegrel J. (2003). Synthesis and structural study of arylidene thiazolidine and benzothiazine compounds. Sulfur Letters, 26:17–27. https://doi.org/10.1080/0278611021000048712
  • Halliwell B. (1995). Antioxidant characterization, Methodology and mechanism. Biochemical Pharmacology, 49 (10), 1341-1348.
  • Hanumantharao P, Sambasivarao SV, Soni LK, Gupta AK., & Kaskhedikar SG. (2005). QSAR analysis of thiazole benzenesulfonamide substituted 3-pyridylethanolamines as beta3-adrenergic receptor agonist. Bioorganic & Medicinal Chemistry, 2005; 15: 3167- 3173. https://doi.org/10.1016/j.bmcl.2005.03.119
  • Karabulut, H., & Gülay, M.Ş., (2016). Antioksidanlar. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi, 1 (1), 65-76. https://doi.org/10.24880/maeuvfd.260790
  • Karaca, M., Varışlı, L., Korkmaz, K., Özaydın, O., Perçin, F., & Orhan, H. (2014). Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicology Letters, 230, 198-207. doi:10.1016/j.toxlet.2014.02.013.
  • Kayhan, F.E., Kaymak, G., Esmer Duruel, H.E., & Tartar Kızılkaya, Ş. (2018). Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7:2, 38-45. https://dergipark.org.tr/tr/pub/gbad/issue/35699/358614
  • Keng P.L., Gong, Z.H., & Tse, W.K.F. (2021). Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquatic Toxicology, 234, 105813. https://doi.org/10.1016/j.aquatox.2021.105813
  • Konyalıoğlu, S., & Perçin, F. (2017). The comparison of lipid peroxidation, glutathione land antioxidant enzyme activities in blood obtained from captive and wild Northern Bluefin Tuna (Thunnus thynnus L., 1758). Free Radical Biology and Medicine, 10:8, S18-S107.
  • Kutluyer, F., & Aksakal, E. (2013). Sucul model organizmalar ve biyoteknolojide kullanımı. Anadolu Tarım Bilimleri Dergisi, 28(2), 101-107. ttps://dergipark.org.tr/tr/pub/omuanajas/issue/20217/214191
  • Liu, S., Deng, X., & Bai, L. (2020). Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor. Science of the Total Environment, 143273. 10.1016/j.scitotenv.2020.143273
  • Meng, Q., Yeung, K., & Chan, K.M. (2021). Toxic effects of octocrylene on zebrafish larvae and liver cell line (ZFL). Aquatic Toxicology, 236, 100-115. https://doi.org/10.1016/j.aquatox.2021.105843
  • Miron, D.S., Prettob, A., Crestani, M., Glusczak, L., Schetinger, M.R., Loro, V.L., & Morsch, V.M. (2008). Biochemical effects of clomazone herbicide on piava (L. obtusidens). Chemosphere, 74, 1–5. https://doi.org/10.1016/j.chemosphere.2008.09.070
  • Moraes, B.S., Clasen, B., Loro, V.L., Pretto, A., Toni, C., De Avila, L.A., Marchesan, E., De Oliveira Machado, S.L., Zanella, R., & Reimche, G.B. (2011). Toxicological responses of Cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicology and Environmental Safety. 74, 328-335. https://doi.org/10.1016/j.ecoenv.2009.05.013
  • Morales, A.E., Perez-Jimenez, A., Hidalgo, M.C., Abellan, E., & Gabriel C.G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology, 139(1-3), 153-161. https://doi.org/10.1016/j.cca.2004.10.008
  • Oruc, E. (2010). Oxidative Stress, Steroid Hormone Concentrations And Acetylcholinesterase Activity in Oreochromis niloticus Exposed to Chlorpyrifos. Pesticide Biochemistry And Physiology, 96,160–166. https://doi.org/10.1016/j.pestbp.2009.11.005
  • Qiu, L., Jia, K., Huang, L., Liano, X., Guo, X., & Lu, H. (2019). Hepatotoxicity of tricylazole in zebrafish (Danio rerio). Chemosphere, 232, 171-179. https://doi.org/10.1016/j.chemosphere.2019.05.159
  • Saxena AK, Pandey SK, Seth P, Singh MP, Dikshit M., & Carpy A. (2001). Synthesis and QSAR Studies in 2-(N-aryl-N-aroyl)amino-4,5-dihydrothiazole Derivatives as Potential Antithrombotic Agents. Bioorganic & Medicinal Chemistry, 9: 2025-2034. https://doi.org/10.1016/s0968-0896(01)00082-7
  • Shanmugapandiyan P, Denshing KS, Ilavarasan R, Anbalagan N., & Nirmala R. (2010). Synthesis and Biological Activity of 2-(Thiazolidin- 4-One) Phenyl]-1h-Phenylbenzimidazoles and 2-[4-(Azetidin-2-One)- 3-Chloro-4-Phenyl]-1h-Phenyl benzimidazoles. International Journal of Pharmaceutical Sciences and Drug Research, 2(2): 115-119. http://ijpsdr.com/index.php/ijpsdr/article/view/94
  • Silva TG, Barbosa FSV, Brandao SSF, Lima MCA, Galdino SL, & Pitta IR. (2001). Synthesis and structural elucidation of new benzylidene imidazolidines and acridinylidene thiazolidines. Heterocyclic Communications, 7: 523–8.
  • Sohda T, Mizuno K, Tawada H, Sugiyama Y, Fujita T, & Kawamastu Y. (1982). Studies on antidiabetic agents. I. Synthesis of 5-[4-(2-methyl-2-phenylpropoxy)-benzyl]thiazolidine-2,4-dione (AL-321) and related compounds. Chemical and Pharmaceutical Bulletin, 30: 3563-3573.
  • Zhao, F., Zhang, M., Guo, M., Duan, M., Zheng, J., Chen, X., Liu, Y., & Qiu, L. (2021). Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio). Aquatic Toxicology, 238, 105938. https://doi.org/10.1016/j.aquatox.2021.105938
  • Zhu, X.Y., Xia, B., Wu, Y.Y., Yang, H., Li, C.Q., & Li, P. (2019). Fenobucarb induces heart failure and cerebral hemorrhage in zebrafish. Aquatic Toxicology, 209, 34-41. https://doi.org/10.1016/j.aquatox.2018.12.020
  • Zirong X., & Shijun B. (2007). Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and Environmental Safety, 67, 89–94. https://doi.org/10.1016/j.ecoenv.2006.04.006

Effects of Thiazolidine on AChE Enzyme Activity and Total Protein Level in Zebrafish (Danio rerio) Gill and Liver Tissue

Year 2022, Volume: 18 Issue: 2, 179 - 186, 01.06.2022
https://doi.org/10.22392/actaquatr.1001378

Abstract

The aim of this study was to investigate the effects of thiazolidine (4S)-2-(4-hydroxy-3-methoxyphenyl) thiazolidine-4-carboxylic acid) on acetylcholinesterase enzyme (AChE) activity and total protein (TP) levels in zebrafish (Danio rerio) gill and liver tissue. Zebrafish were exposed to 0.2 ppm, 0.4 ppm and 0.6 ppm different doses of thiazolidine for 96 hours. AChE enzyme activity increased in liver tissue in 0.2 ppm, 0.4 ppm and 0.6 ppm dose groups of thiazolidine compared to the control group. In the gill tissue, AChE enzyme activity was decreased in 0.2 ppm, 0.4 ppm and 0.6 ppm dose groups of thiazolidine compared to the control group. Total protein level in liver tissue decreased in 0.2 ppm, 0.4 ppm and 0.6 ppm dose groups of thiazolidine compared to the control group. In the gill tissue, total protein levels were significantly increased in the 0.2 ppm, 0.4 ppm and 0.6 ppm dose groups of thiazolidine compared to the control group. In conclusion, it was seen that thiazolidine may cause some harmful effects on zebrafish gill and liver tissues in this study.

Project Number

Proje No 2014-02-20-002

References

  • Ahkin Chin Tai, J.K., & Freeman, J.L. (2020). Zebrafish as an integrative vertebrate model to identify mRNA mechanisms regulating toxicity. Toxicology Reports, 7, 559-570, 10.1016/j.toxrep.2020.03.010.
  • Akbulut, C., Öztürk, B., Genc, H., Zengin, M., & Yön, N.D. (2017). Developmental Toxicity of (4S)-2- (4-hydroxy-3-methoxyphenyl) thiazolidine-4-carboxylic acid in Zebrafish (Danio rerio). Biological and Applied Sciences. Brazilian Archieves of Biology and Technology, 60, e17160547. http://dx.doi.org/10.1590/1678-4324-2017160547
  • Altan, N., Dinçel, S. A., & Koca, C. (2006). Diabetes mellitus ve oksidatif stres. Türk Biyokimya Dergisi, 31(2): 51-56.
  • Bhoot DP, Khunt RC, Sankhavara VK., & Parekh HH. (2006). Synthesis of Some New Heterocyclic Compounds with Potential Biological Activity. Journal of Sciences, 17(4): 323-325. Corpus ID: 86201453.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-250.
  • Chen, X., Teng, M., Zhang, J., Qian, L., Duan, M., Cheng, Y., Zhao, F., Zheng, J., & Wang, C. (2020). Tralopyril induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. Science of the Total Environment, 746: 141860. https://doi.org/10.1016/j.scitotenv.2020.141860
  • Çapkın, E. (2011). Effects of carbosulfan on erythrocyte acetylcholinesterase (AChE) activities of rainbow trout (Oncorhyncus mykiss)). Journal of Fisheries Sciences, 5 (3), 240-249. https://doi.org/10.3153/jfscom.2011028
  • Dai, YJ., Jia, YF., Chen, N., Bian, WP., Li, QK., Ma, YB., Chen, YL., & Pei, DS. (2014). Zebrafish as a model system to study toxicology. Environmental Toxicology and Chemistry, 33(1): 11-17. doi: https://doi.org/10.1002/etc.2406
  • Ellman, G. L., Courtney, K. D., Andes, V., & Featherstone, R. M. (1961). A new rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-92.
  • Fırat, Ö., Cogun, H. Y., Aslanyavrusu, S., & Kargın, F. (2009). Antioxidant responses and metal accumulation in tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. Journal of Applied Toxicology, 29, 295-301. https://doi.org/10.1002/jat.1406
  • Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
  • Fu, J., Tan, Y.X.R., Gong, Z., & Bae, S. (2020). The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos. Ecotoxicology and Environmental Safety, 189. https://doi.org/10.1016/j.ecoenv.2019.110039
  • Guarda VLM, Pereira MA, De Simone CA, Albuquerque JFC, Galdino SL., & Chantegrel J. (2003). Synthesis and structural study of arylidene thiazolidine and benzothiazine compounds. Sulfur Letters, 26:17–27. https://doi.org/10.1080/0278611021000048712
  • Halliwell B. (1995). Antioxidant characterization, Methodology and mechanism. Biochemical Pharmacology, 49 (10), 1341-1348.
  • Hanumantharao P, Sambasivarao SV, Soni LK, Gupta AK., & Kaskhedikar SG. (2005). QSAR analysis of thiazole benzenesulfonamide substituted 3-pyridylethanolamines as beta3-adrenergic receptor agonist. Bioorganic & Medicinal Chemistry, 2005; 15: 3167- 3173. https://doi.org/10.1016/j.bmcl.2005.03.119
  • Karabulut, H., & Gülay, M.Ş., (2016). Antioksidanlar. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi, 1 (1), 65-76. https://doi.org/10.24880/maeuvfd.260790
  • Karaca, M., Varışlı, L., Korkmaz, K., Özaydın, O., Perçin, F., & Orhan, H. (2014). Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio. Toxicology Letters, 230, 198-207. doi:10.1016/j.toxlet.2014.02.013.
  • Kayhan, F.E., Kaymak, G., Esmer Duruel, H.E., & Tartar Kızılkaya, Ş. (2018). Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7:2, 38-45. https://dergipark.org.tr/tr/pub/gbad/issue/35699/358614
  • Keng P.L., Gong, Z.H., & Tse, W.K.F. (2021). Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquatic Toxicology, 234, 105813. https://doi.org/10.1016/j.aquatox.2021.105813
  • Konyalıoğlu, S., & Perçin, F. (2017). The comparison of lipid peroxidation, glutathione land antioxidant enzyme activities in blood obtained from captive and wild Northern Bluefin Tuna (Thunnus thynnus L., 1758). Free Radical Biology and Medicine, 10:8, S18-S107.
  • Kutluyer, F., & Aksakal, E. (2013). Sucul model organizmalar ve biyoteknolojide kullanımı. Anadolu Tarım Bilimleri Dergisi, 28(2), 101-107. ttps://dergipark.org.tr/tr/pub/omuanajas/issue/20217/214191
  • Liu, S., Deng, X., & Bai, L. (2020). Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor. Science of the Total Environment, 143273. 10.1016/j.scitotenv.2020.143273
  • Meng, Q., Yeung, K., & Chan, K.M. (2021). Toxic effects of octocrylene on zebrafish larvae and liver cell line (ZFL). Aquatic Toxicology, 236, 100-115. https://doi.org/10.1016/j.aquatox.2021.105843
  • Miron, D.S., Prettob, A., Crestani, M., Glusczak, L., Schetinger, M.R., Loro, V.L., & Morsch, V.M. (2008). Biochemical effects of clomazone herbicide on piava (L. obtusidens). Chemosphere, 74, 1–5. https://doi.org/10.1016/j.chemosphere.2008.09.070
  • Moraes, B.S., Clasen, B., Loro, V.L., Pretto, A., Toni, C., De Avila, L.A., Marchesan, E., De Oliveira Machado, S.L., Zanella, R., & Reimche, G.B. (2011). Toxicological responses of Cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicology and Environmental Safety. 74, 328-335. https://doi.org/10.1016/j.ecoenv.2009.05.013
  • Morales, A.E., Perez-Jimenez, A., Hidalgo, M.C., Abellan, E., & Gabriel C.G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comporative Biochemistry and Physiology, 139(1-3), 153-161. https://doi.org/10.1016/j.cca.2004.10.008
  • Oruc, E. (2010). Oxidative Stress, Steroid Hormone Concentrations And Acetylcholinesterase Activity in Oreochromis niloticus Exposed to Chlorpyrifos. Pesticide Biochemistry And Physiology, 96,160–166. https://doi.org/10.1016/j.pestbp.2009.11.005
  • Qiu, L., Jia, K., Huang, L., Liano, X., Guo, X., & Lu, H. (2019). Hepatotoxicity of tricylazole in zebrafish (Danio rerio). Chemosphere, 232, 171-179. https://doi.org/10.1016/j.chemosphere.2019.05.159
  • Saxena AK, Pandey SK, Seth P, Singh MP, Dikshit M., & Carpy A. (2001). Synthesis and QSAR Studies in 2-(N-aryl-N-aroyl)amino-4,5-dihydrothiazole Derivatives as Potential Antithrombotic Agents. Bioorganic & Medicinal Chemistry, 9: 2025-2034. https://doi.org/10.1016/s0968-0896(01)00082-7
  • Shanmugapandiyan P, Denshing KS, Ilavarasan R, Anbalagan N., & Nirmala R. (2010). Synthesis and Biological Activity of 2-(Thiazolidin- 4-One) Phenyl]-1h-Phenylbenzimidazoles and 2-[4-(Azetidin-2-One)- 3-Chloro-4-Phenyl]-1h-Phenyl benzimidazoles. International Journal of Pharmaceutical Sciences and Drug Research, 2(2): 115-119. http://ijpsdr.com/index.php/ijpsdr/article/view/94
  • Silva TG, Barbosa FSV, Brandao SSF, Lima MCA, Galdino SL, & Pitta IR. (2001). Synthesis and structural elucidation of new benzylidene imidazolidines and acridinylidene thiazolidines. Heterocyclic Communications, 7: 523–8.
  • Sohda T, Mizuno K, Tawada H, Sugiyama Y, Fujita T, & Kawamastu Y. (1982). Studies on antidiabetic agents. I. Synthesis of 5-[4-(2-methyl-2-phenylpropoxy)-benzyl]thiazolidine-2,4-dione (AL-321) and related compounds. Chemical and Pharmaceutical Bulletin, 30: 3563-3573.
  • Zhao, F., Zhang, M., Guo, M., Duan, M., Zheng, J., Chen, X., Liu, Y., & Qiu, L. (2021). Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio rerio). Aquatic Toxicology, 238, 105938. https://doi.org/10.1016/j.aquatox.2021.105938
  • Zhu, X.Y., Xia, B., Wu, Y.Y., Yang, H., Li, C.Q., & Li, P. (2019). Fenobucarb induces heart failure and cerebral hemorrhage in zebrafish. Aquatic Toxicology, 209, 34-41. https://doi.org/10.1016/j.aquatox.2018.12.020
  • Zirong X., & Shijun B. (2007). Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and Environmental Safety, 67, 89–94. https://doi.org/10.1016/j.ecoenv.2006.04.006
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Figen Esin Kayhan 0000-0001-7754-1356

Harika Eylül Esmer Duruel 0000-0002-0792-2062

Şeyma Tartar Kızılkaya This is me 0000-0001-8065-217X

Güllü Kaymak 0000-0001-6309-0208

Cansu Akbulut 0000-0003-4333-7669

Hayriye Genç 0000-0001-6909-316X

Mustafa Zengin 0000-0002-0243-1432

Nazan Deniz Yön Ertuğ 0000-0002-6830-8971

Project Number Proje No 2014-02-20-002
Early Pub Date May 31, 2022
Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 18 Issue: 2

Cite

APA Kayhan, F. E., Esmer Duruel, H. E., Tartar Kızılkaya, Ş., Kaymak, G., et al. (2022). Tiazolidin’in Zebra Balığı (Danio rerio) Solungaç ve Karaciğer Dokusunda AChE Enzim Aktivitesi ve Toplam Protein Seviyesi Üzerine Etkileri. Acta Aquatica Turcica, 18(2), 179-186. https://doi.org/10.22392/actaquatr.1001378