Bu çalışmada, askeri araçlar için özel koşullara uygun fren balatası üretimi ve bu balataların frenleme karakteristiklerinin incelenmesi gerçekleştirilmiştir. Ek olarak, özel çalışma koşullarına sahip askeri tanklar için ideal bir frenleme sistemi oluşturmak amaçlanmıştır. Bu doğrultuda, askeri tanklarda kullanılmak üzere balata formülasyon çalışmaları gerçekleştirilmiş ve sıcak basım yöntemiyle üretilen fren balatalarının performansı Chase ve Dinamometre testleriyle değerlendirilmiştir. Ayrıca, fırınlama işlemi öncesi ve sonrasında kimyasal testlerle balata özellikleri detaylı bir şekilde incelenmiştir. Askeri araçların güvenliği ve etkinliği için kritik bir bileşen olan fren balatasının yapılan testler sonucu F grubu balata standardında yer aldığı belirlenmiştir. Elde edilen sonuçlar, balata malzemesinin özelliklerindeki değişimleri ve balatanın frenleme performansının belirlenmesini sağlamıştır.
Abutu, J., Lawal, S.A., Ndaliman, M.B., Lafia-Araga, R.A., Adedipe, O. & Choudhury, I.A. (2018). Production and Characterization of Brake Pad Developed From Coconut Shell Reinforcement Material Using Central Composite Design. SN Applied Sciences, 1(82). Doi: 10.1007/s42452-018-0084-x.
Akıncıoğlu, G., Akıncıoğlu, S., Öktem, H. & Uygur, İ. (2021). Brake Pad Performance Characteristic Assessment Methods. International Journal of Automotive Science and Technology, 5(1), 67-78. Doi: 10.30939/ijastech..848266.
Chauhan, V., Bijwe, J. & Darpe, A. (2021). Functionalization of Alumina Particles to Improve the Performance of Eco-Friendly Brake-Pads, Friction, 9, 1213–1226.
Egeonu, D., Oluah, C. & Okolo, P. (2015). Production of Eco-Friendly Brake Pad Using Raw Materials Sourced Locally In Nsukka. Journal of Energy Technologies and Policy, 5(11), 47-54.
Jeganmohan, S., & Sugozu, B. (2020). Usage of Powder Pinusbrutia Cone and Colemanite Combination in Brake Friction Composites as Friction Modifier. Materials Today: Proceedings, 27(3), 2072-2075.
Krishnan, G. S., Kumar, S., Suresh, G., Akash, N., Kumar, V. S. & David, J.P. (2021). Role of Metal Composite Alloys in Non-Asbestos Brake Friction Materials-A Solution for Copper Replacement. Materials Today: Proceedings, 45, 926-929.
Lawal, S.S., Ademoh, N.A., Bala, K.C. & Abdulrahman, A.S. (2019). A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. Journal of Physics:Conference Series, 1378. Doi: 10.1088/1742-6596/1378/3/032103.
SAE J661, (2021). Brake Lining Quality Test Procedure, SAE International, Warrendale, USA.
SAE J866, (2019). Friction Coefficient Identification and Environmental Marking System for Brake Linings, SAE International, Warrendale, USA.
Sugözü, B. (2018). Investigation of Ulexite Usage in Automotive Brake Friction Materials. Turkish Journal of Engineering, 2 (3), 125-129. Doi: 10.31127/tuje.403215.
Sugözü, B. & Sugözü, İ. (2020). Investigation of the Use of a New Binder Material in Automotive Brake Pad. International Journal of Automotive Science and Technology, 4(4), 258-263.
Sugözü, B. & Sugözü, İ. (2020). Investigation of Usage of Milled Pine Cone in Brake Pads. International Journal of Automotive Science and Technology, 4(4), 253-257.
TSE 555, (2019). Karayolu Taşıtları-Fren Sistemleri-Balatalar- Sürtünmeli Frenler için Balatalar, Türk Standartları Enstitüsü, Ankara.
Ünaldı, M. & Kuş, R. (2018). The Determination of The Effect of Mixture Proportions and Production Parameters on Density and Porosity Features of Miscanthus Reinforced Brake Pads by Taguchi Method. International Journal of Automotive Engineering and Technologies, 7(1), 48-57.
Yavuz, H. (2023). An Experimental Case Study on The Comparison of The Use of Micronized Quartz and Alumina in Brake Pads. Turkish Journal of Nature and Science, 12 (3) ,9-14. Doi: 10.46810/tdfd.1291333.
Yavuz, H. & Bayrakçeken, H. (2022). Investigation of Friction and Wear Behavior of Composite Brake Pads Produced with Huntite Mineral. International Journal of Automotive Science and Technology, 6 (1) ,9-16. Doi: 10.30939/ijastech..1022247.
Yılmaz, A.C. (2022). Effects of Fly Ash Introduction on Friction and Wear Characteristics of Brake Pads. International Journal of Automotive Engineering and Technologies, 11(3), 96-103. Doi: 10.18245/ijaet.1108124.
Brake Pad Production and Braking Characteristics Analysis for Military Vehicles
Year 2023,
Volume: 1 Issue: 2, 115 - 123, 28.12.2023
In this study, the production of brake pads suitable for special conditions for military vehicles and the examination of the braking characteristics of these pads were carried out. In addition, it is intended to create an ideal braking system for military tanks with special operating conditions. In this direction, pad formulation studies were carried out for use in military tanks and the performance of brake pads produced by hot pressing method was evaluated with Chase and Dynamometer tests. Additionally, the pad properties were examined in detail with chemical tests before and after the baking process. As a result of the tests, it has been determined that the brake pad, which is a critical component for the safety and effectiveness of military vehicles, is included in the F group pad standard. The results obtained enabled the changes in the properties of the pad material and the braking performance of the pad to be determined.
Abutu, J., Lawal, S.A., Ndaliman, M.B., Lafia-Araga, R.A., Adedipe, O. & Choudhury, I.A. (2018). Production and Characterization of Brake Pad Developed From Coconut Shell Reinforcement Material Using Central Composite Design. SN Applied Sciences, 1(82). Doi: 10.1007/s42452-018-0084-x.
Akıncıoğlu, G., Akıncıoğlu, S., Öktem, H. & Uygur, İ. (2021). Brake Pad Performance Characteristic Assessment Methods. International Journal of Automotive Science and Technology, 5(1), 67-78. Doi: 10.30939/ijastech..848266.
Chauhan, V., Bijwe, J. & Darpe, A. (2021). Functionalization of Alumina Particles to Improve the Performance of Eco-Friendly Brake-Pads, Friction, 9, 1213–1226.
Egeonu, D., Oluah, C. & Okolo, P. (2015). Production of Eco-Friendly Brake Pad Using Raw Materials Sourced Locally In Nsukka. Journal of Energy Technologies and Policy, 5(11), 47-54.
Jeganmohan, S., & Sugozu, B. (2020). Usage of Powder Pinusbrutia Cone and Colemanite Combination in Brake Friction Composites as Friction Modifier. Materials Today: Proceedings, 27(3), 2072-2075.
Krishnan, G. S., Kumar, S., Suresh, G., Akash, N., Kumar, V. S. & David, J.P. (2021). Role of Metal Composite Alloys in Non-Asbestos Brake Friction Materials-A Solution for Copper Replacement. Materials Today: Proceedings, 45, 926-929.
Lawal, S.S., Ademoh, N.A., Bala, K.C. & Abdulrahman, A.S. (2019). A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. Journal of Physics:Conference Series, 1378. Doi: 10.1088/1742-6596/1378/3/032103.
SAE J661, (2021). Brake Lining Quality Test Procedure, SAE International, Warrendale, USA.
SAE J866, (2019). Friction Coefficient Identification and Environmental Marking System for Brake Linings, SAE International, Warrendale, USA.
Sugözü, B. (2018). Investigation of Ulexite Usage in Automotive Brake Friction Materials. Turkish Journal of Engineering, 2 (3), 125-129. Doi: 10.31127/tuje.403215.
Sugözü, B. & Sugözü, İ. (2020). Investigation of the Use of a New Binder Material in Automotive Brake Pad. International Journal of Automotive Science and Technology, 4(4), 258-263.
Sugözü, B. & Sugözü, İ. (2020). Investigation of Usage of Milled Pine Cone in Brake Pads. International Journal of Automotive Science and Technology, 4(4), 253-257.
TSE 555, (2019). Karayolu Taşıtları-Fren Sistemleri-Balatalar- Sürtünmeli Frenler için Balatalar, Türk Standartları Enstitüsü, Ankara.
Ünaldı, M. & Kuş, R. (2018). The Determination of The Effect of Mixture Proportions and Production Parameters on Density and Porosity Features of Miscanthus Reinforced Brake Pads by Taguchi Method. International Journal of Automotive Engineering and Technologies, 7(1), 48-57.
Yavuz, H. (2023). An Experimental Case Study on The Comparison of The Use of Micronized Quartz and Alumina in Brake Pads. Turkish Journal of Nature and Science, 12 (3) ,9-14. Doi: 10.46810/tdfd.1291333.
Yavuz, H. & Bayrakçeken, H. (2022). Investigation of Friction and Wear Behavior of Composite Brake Pads Produced with Huntite Mineral. International Journal of Automotive Science and Technology, 6 (1) ,9-16. Doi: 10.30939/ijastech..1022247.
Yılmaz, A.C. (2022). Effects of Fly Ash Introduction on Friction and Wear Characteristics of Brake Pads. International Journal of Automotive Engineering and Technologies, 11(3), 96-103. Doi: 10.18245/ijaet.1108124.
Endes Yılmaz, C., Çapkın, İ. Y., Dalar, O., Demirel, B., et al. (2023). Askeri Araçlar için Fren Balatası Üretimi ve Frenleme Karakteristiğinin İncelenmesi. Artvin Çoruh Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 1(2), 115-123.