Review
BibTex RIS Cite

Çocuk Diş Hekimliğinde Biyoseramik Materyaller

Year 2023, Volume: 2 Issue: 3, 151 - 161, 30.12.2023

Abstract

Biyoseramikler dokuların rejenerasyonu, onarımı ya da replasmanı için özel olarak tasarlanmış materyallerdir ve günümüzde çeşitli medikal ya da dişhekimliği tedavi prosedürlerinde kullanılmaktadır. Biyouyumlu, bioaktif ve rejeneratif özellikleri nedeniyle biyoseramik materyaller çocuk diş hekimliğinde süt ve sürekli dişlerin vital pulpa tedavilerinde, genç sürekli dişlerin apeksifikasyon tedavilerinde, rejeneratif endodontide, rezorpsiyon-perforasyon onarımlarında uygulanabilmektedir. Son yirmi yılda endodontik prosedürlerde kullanılmak üzere farklı içerik ve özelliklere sahip çeşitli ticari biyoseramik materyalin geliştirildiği görülmektedir. Bu derlemede, çocuklarda endodontik tedavi prosedürlerinde kullanılabilen biyoseramik materyallerin belirtilmesi, fizikokimyasal ve biyolojik özelliklerinin vurgulanması amaçlanmıştır.

Bioceramics, the biocompatible materials specially designed to regenerate, repair or replace the tissues, are used today in various medical or dental procedures. In pediatric dentistry, the bioceramic materials can be applied in vital pulp therapies of primary and permanent teeth, apexification treatments of immature teeth, regenerative endodontics and furcation-resorption repairs due to their biocompatible, bioactive and regenerative properties. In the last two decades, it has been observed that several commercial bioceramic materials with different contents and properties were developed for endodontic procedures. This review focuses on overview of bioceramics used today in endodontic treatment procedures of children, and emphasizes their physicochemical and biological properties.

References

  • 1. Best S, Porter A, Thian E, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society. 2008;28(7):1319-27.
  • 2. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie. 2010;13(1-2):174-85.
  • 3. Koch K, Brave D, Nasseh AA. A review of bioceramic technology in endodontics. CE article. 2012;4:6-12.
  • 4. Mondelli JAS, Hoshino RA, Weckwerth PH, Cerri PS, Leonardo RT, Guerreiro-Tanomaru JM, et al. Biocompatibility of mineral trioxide aggregate flow and biodentine. Int Endod J. 2019;52(2):193-200.
  • 5. Jardine AP, Montagner F, Quintana RM, Zaccara IM, Kopper PMP. Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clinical Oral Investigations. 2019;23(3):1367-72.
  • 6. Geros R, Chahayeb A, Shulman A. Apatite calcium phosphates: Possible dental restauration materials. J Dent Res. 1982;61:343-7.
  • 7. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review. International journal of biomaterials. 2016;2016.
  • 8. Chohayeb AA, Chow LC, Tsaknis PJ. Evaluation of calcium phosphate as a root canal sealer-filler material. Journal of Endodontics. 1987;13(8):384-7.
  • 9. Chau JY, Hutter JW, Mork TO, Nicoll BK. An in vitro study of furcation perforation repair using calcium phosphate cement. Journal of Endodontics. 1997;23(9):588-92.
  • 10. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics - a review. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S128-S37.
  • 11. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018;51(2):177-205.
  • 12. Kaup M, Schafer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16.
  • 13. Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(6):809-15.
  • 14. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16-27.
  • 15. Namazikhah M, Nekoofar MH, Sheykhrezae M, Salariyeh S, Hayes SJ, Bryant ST, et al. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. International endodontic journal. 2008;41(2):108-16.
  • 16. Saghiri MA, Lotfi M, Joupari MD, Aeinehchi M, Saghiri AM. Effects of storage temperature on surface hardness, microstructure, and phase formation of white mineral trioxide aggregate. Journal of endodontics. 2010;36(8):1414-8.
  • 17. Atabek D, Sillelioğlu H, Ölmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. Journal of endodontics. 2012;38(9):1288-92.
  • 18. Thanatvarakorn O, Nakajima M, Prasansuttiporn T, Ichinose S, Foxton RM, Tagami J. Effect of smear layer deproteinizing on resin-dentine interface with self-etch adhesive. J Dent. 2014;42(3):298-304.
  • 19. Zhu C, Ju B, Ni R. Clinical outcome of direct pulp capping with MTA or calcium hydroxide: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(10):17055-60.
  • 20. Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod. 1998;24(7):468-71.
  • 21. Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod. 2004;30(6):429-31.
  • 22. Santos AD, Araujo EB, Yukimitu K, Barbosa JC, Moraes JC. Setting time and thermal expansion of two endodontic cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):e77-9.
  • 23. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. Journal of endodontics. 2010;36(1):16-27.
  • 24. Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731-6.
  • 25. Pereira CL, Cenci MS, Demarco FF. Sealing ability of MTA, Super EBA, Vitremer and amalgam as root-end filling materials. Braz Oral Res. 2004;18(4):317-21.
  • 26. Ribeiro DA, Sugui MM, Matsumoto MA, Duarte MAH, Marques MEA, Salvadori DMF. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006;101(2):258-61.
  • 27. Sipert CR, Hussne RP, Nishiyama CK, Torres SA. In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland cement and EndoRez. Int Endod J. 2005;38(8):539-43.
  • 28. Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate. Journal of endodontics. 2014;40(10):1632-7.
  • 29. DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. Journal of endodontics. 2015;41(3):385-8.
  • 30. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. Journal of applied biomaterials & functional materials. 2015;13(1):43-60.
  • 31. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. The Scientific World Journal. 2014;2014.
  • 32. Erfanparast L, Iranparvar P, Vafaei A. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry. 2018;19(3):197-203.
  • 33. Eid AA, Gosier JL, Primus CM, Hammond BD, Susin LF, Pashley DH, et al. In vitro biocompatibility and oxidative stress profiles of different hydraulic calcium silicate cements. Journal of endodontics. 2014;40(2):255-60.
  • 34. Kramer PR, Woodmansey KF, White R, Primus CM, Opperman LA. Capping a pulpotomy with calcium aluminosilicate cement: comparison to mineral trioxide aggregates. Journal of endodontics. 2014;40(9):1429-34.
  • 35. Assmann E, Scarparo RK, Böttcher DE, Grecca FS. Dentin bond strength of two mineral trioxide aggregate–based and one epoxy resin–based sealers. Journal of endodontics. 2012;38(2):219-21.
  • 36. Silva EJ, Rosa TP, Herrera DR, Jacinto RC, Gomes BP, Zaia AA. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. Journal of endodontics. 2013;39(2):274-7.
  • 37. Sagsen B, Ustün Y, Demirbuga S, Pala K. Push‐out bond strength of two new calcium silicate‐based endodontic sealers to root canal dentine. International endodontic journal. 2011;44(12):1088-91.
  • 38. Tanalp J, Dikbas I, Malkondu Ö, Ersev H, Güngör T, Bayırlı G. Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dental Traumatology. 2012;28(6):457-64.
  • 39. Siboni F, Taddei P, Prati C, Gandolfi MG. Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int Endod J. 2017;50 Suppl 2:e83-e94.
  • 40. Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2018;44(1):126-32.
  • 41. Camilleri J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J Endod. 2015;41(7):1139-45.
  • 42. Govindaraju L, Neelakantan P, Gutmann JL. Effect of root canal irrigating solutions on the compressive strength of tricalcium silicate cements. Clin Oral Investig. 2017;21(2):567-71.
  • 43. Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359-66.
  • 44. Sun Q, Meng M, Steed JN, Sidow SJ, Bergeron BE, Niu LN, et al. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent. 2021;104:103530.
  • 45. Özata MY, Falakaloğlu S, Plotino G, Adıgüzel Ö. The micro-shear bond strength of new endodontic tricalcium silicate-based putty: An in vitro study. Aust Endod J. 2022.
  • 46. İpek İ, Ünal M, Güner A, Candan M. Push-out bond strength of Biodentine, MTA repair HP, and a new pre-mixed NeoPutty bioactive cement: scanning electron microscopy energy dispersive X-ray spectroscopy analysis. Journal of the Australian Ceramic Society. 2022;58(1):171-9.
  • 47. Da Fonseca T, Da Silva G, Tanomaru‐Filho M, Sasso‐Cerri E, Guerreiro‐Tanomaru J, Cerri PS. In vivo evaluation of the inflammatory response and IL‐6 immunoexpression promoted by Biodentine and MTA Angelus. International Endodontic Journal. 2016;49(2):145-53.
  • 48. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dental materials. 2013;29(5):580-93.
  • 49. Bani M, Sungurtekin-Ekçi E, Odabaş ME. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study. Biomed Res Int. 2015;2015:359275.
  • 50. Bhavya B, Sadique M, Simon EP, Ravi S, Lal S. Spectrophotometric analysis of coronal discoloration induced by white mineral trioxide aggregate and Biodentine: An in vitro study. Journal of Conservative Dentistry: JCD. 2017;20(4):237.
  • 51. Jang Y-E, Lee B-N, Koh J-T, Park Y-J, Joo N-E, Chang H-S, et al. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restorative dentistry & endodontics. 2014;39(2):89-94.
  • 52. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P. Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. Journal of endodontics. 2015;41(11):1805-17.
  • 53. Singh H, Kaur M, Markan S, Kapoor P. Biodentine: A promising dentin substitute. J Interdiscipl Med Dent Sci. 2014;2(140):2.
  • 54. Kim J, Song Y-S, Min K-S, Kim S-H, Koh J-T, Lee B-N, et al. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restorative dentistry & endodontics. 2016;41(1):29-36.
  • 55. Zhou H-m, Shen Y, Wang Z-j, Li L, Zheng Y-f, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. Journal of endodontics. 2013;39(4):478-83.
  • 56. Han L, Okiji T. Bioactivity evaluation of three calcium silicate‐based endodontic materials. International endodontic journal. 2013;46(9):808-14.
  • 57. Bani M, Aktaş N, Çınar Ç, Odabaş ME. The clinical and radiographic success of primary molar pulpotomy using Biodentine™ and mineral trioxide aggregate: a 24-month randomized clinical trial. Pediatric dentistry. 2017;39(4):284-8.
  • 58. Tran X, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, et al. Effect of a calcium-silicate-based restorative cement on pulp repair. Journal of dental research. 2012;91(12):1166-71.
  • 59. Niranjani K, Prasad MG, Vasa AAK, Divya G, Thakur MS, Saujanya K. Clinical evaluation of success of primary teeth pulpotomy using mineral trioxide aggregate®, laser and biodentineTM-an in vivo study. Journal of clinical and diagnostic research: JCDR. 2015;9(4):ZC35.
  • 60. Juneja P, Kulkarni S. Clinical and radiographic comparison of biodentine, mineral trioxide aggregate and formocresol as pulpotomy agents in primary molars. European Archives of Paediatric Dentistry. 2017;18(4):271-8.
  • 61. Sushynski JM, Zealand CM, Botero TM, Boynton JR, Majewski RF, Shelburne CE, et al. Comparison of gray mineral trioxide aggregate and diluted formocresol in pulpotomized primary molars: a 6-to 24-month observation. Pediatric dentistry. 2012;34(5):120E-8E.
  • 62. Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. Journal of endodontics. 2012;38(9):1220-6.
  • 63. Gandolfi MG, Siboni F, Polimeni A, Bossù M, Riccitiello F, Rengo S, et al. In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dentistry Journal. 2013;1(4):41-60.
  • 64. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. Journal of endodontics. 2013;39(3):380-4.
  • 65. Yoldaş SE, Bani M, Atabek D, Bodur H. Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. Journal of endodontics. 2016;42(12):1815-8.
  • 66. Madfa AA, Al-Sanabani FA, Al-Kudami NHA-Q. Endodontic repair filling materials: A review article. British Journal of Medicine and Medical Research. 2014;4(16):3059.
  • 67. Chang SW. Chemical composition and porosity characteristics of various calcium silicate-based endodontic cements. Bioinorganic chemistry and applications. 2018;2018.
  • 68. Hashem AAR, Amin SAW. The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. Journal of endodontics. 2012;38(2):245-9.
  • 69. Saghiri MA, Garcia‐Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push‐out bond strength of a nano‐modified mineral trioxide aggregate. Dental Traumatology. 2013;29(4):323-7.
  • 70. Çelik D, Er K, Serper A, Taşdemir T, Ceyhanlı KT. Push-out bond strength of three calcium silicate cements to root canal dentine after two different irrigation regimes. Clinical oral investigations. 2014;18(4):1141-6.
  • 71. El Sayed M, Saeed M. In vitro comparative study of sealing ability of Diadent BioAggregate and other root-end filling materials. Journal of conservative dentistry: JCD. 2012;15(3):249.
  • 72. Park J-W, Hong S-H, Kim J-H, Lee S-J, Shin S-J. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;109(1):155-8.
  • 73. Chung C-R, Kim E, Shin S-J. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. Journal of Korean academy of conservative dentistry. 2010;35(6):473-8.
  • 74. Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. International endodontic journal. 2015;48(4):323-32.
  • 75. Damas BA, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. Journal of endodontics. 2011;37(3):372-5.
  • 76. Zhang S, Yang X, Fan M. BioAggregate and iR oot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. International endodontic journal. 2013;46(10):923-9.
  • 77. Shi S, Bao Z, Liu Y, Zhang D, Chen X, Jiang L, et al. Comparison of in vivo dental pulp responses to capping with iR oot BP Plus and mineral trioxide aggregate. International endodontic journal. 2016;49(2):154-60.
  • 78. Alsalleeh F, Chung N, Stephenson L. Antifungal activity of endosequence root repair material and mineral trioxide aggregate. Journal of endodontics. 2014;40(11):1815-9.
  • 79. Rodríguez-Lozano FJ, López-García S, García-Bernal D, Sanz JL, Lozano A, Pecci-Lloret MP, et al. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig. 2021;25(8):5009-24.
  • 80. Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, et al. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2021;47(12):1896-906.
  • 81. Karadas M, Atıcı MG. Bond strength and adaptation of pulp capping materials to dentin. Microsc Res Tech. 2020;83(5):514-22.
  • 82. Qureshi A, E S, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res. 2014;8(1):316-21.
  • 83. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. Solubility and pH of direct pulp capping materials: a comparative study. Journal of Applied Biomaterials & Functional Materials. 2015;13(2):181-5.
  • 84. Yamamoto S, Han L, Noiri Y, Okiji T. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. International endodontic journal. 2017;50:e73-e82.
  • 85. Hess D, Solomon E, Spears R, He J. Retreatability of a bioceramic root canal sealing material. Journal of endodontics. 2011;37(11):1547-9.
  • 86. Ribeiro DA, Matsumoto MA, Duarte MAH, Marques MEA, Salvadori DMF. In vitro biocompatibility tests of two commercial types of mineral trioxide aggregate. Brazilian oral research. 2005;19(3):183-7.
  • 87. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, et al. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. Journal of endodontics. 2011;37(5):673-7.
  • 88. Yang Q, Troczynski T, Liu D-M. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials. 2002;23(13):2751-60.
  • 89. Shokouhinejad N, Hoseini A, Gorjestani H, Shamshiri AR. The effect of different irrigation protocols for smear layer removal on bond strength of a new bioceramic sealer. Iranian Endodontic Journal. 2013;8(1):10.
  • 90. Mukhtar-Fayyad D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2011;112(6):e137-e42.
  • 91. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate–based canal filling material. International endodontic journal. 2010;43(9):769-74.
Year 2023, Volume: 2 Issue: 3, 151 - 161, 30.12.2023

Abstract

References

  • 1. Best S, Porter A, Thian E, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society. 2008;28(7):1319-27.
  • 2. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie. 2010;13(1-2):174-85.
  • 3. Koch K, Brave D, Nasseh AA. A review of bioceramic technology in endodontics. CE article. 2012;4:6-12.
  • 4. Mondelli JAS, Hoshino RA, Weckwerth PH, Cerri PS, Leonardo RT, Guerreiro-Tanomaru JM, et al. Biocompatibility of mineral trioxide aggregate flow and biodentine. Int Endod J. 2019;52(2):193-200.
  • 5. Jardine AP, Montagner F, Quintana RM, Zaccara IM, Kopper PMP. Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clinical Oral Investigations. 2019;23(3):1367-72.
  • 6. Geros R, Chahayeb A, Shulman A. Apatite calcium phosphates: Possible dental restauration materials. J Dent Res. 1982;61:343-7.
  • 7. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review. International journal of biomaterials. 2016;2016.
  • 8. Chohayeb AA, Chow LC, Tsaknis PJ. Evaluation of calcium phosphate as a root canal sealer-filler material. Journal of Endodontics. 1987;13(8):384-7.
  • 9. Chau JY, Hutter JW, Mork TO, Nicoll BK. An in vitro study of furcation perforation repair using calcium phosphate cement. Journal of Endodontics. 1997;23(9):588-92.
  • 10. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics - a review. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S128-S37.
  • 11. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018;51(2):177-205.
  • 12. Kaup M, Schafer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16.
  • 13. Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(6):809-15.
  • 14. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16-27.
  • 15. Namazikhah M, Nekoofar MH, Sheykhrezae M, Salariyeh S, Hayes SJ, Bryant ST, et al. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. International endodontic journal. 2008;41(2):108-16.
  • 16. Saghiri MA, Lotfi M, Joupari MD, Aeinehchi M, Saghiri AM. Effects of storage temperature on surface hardness, microstructure, and phase formation of white mineral trioxide aggregate. Journal of endodontics. 2010;36(8):1414-8.
  • 17. Atabek D, Sillelioğlu H, Ölmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. Journal of endodontics. 2012;38(9):1288-92.
  • 18. Thanatvarakorn O, Nakajima M, Prasansuttiporn T, Ichinose S, Foxton RM, Tagami J. Effect of smear layer deproteinizing on resin-dentine interface with self-etch adhesive. J Dent. 2014;42(3):298-304.
  • 19. Zhu C, Ju B, Ni R. Clinical outcome of direct pulp capping with MTA or calcium hydroxide: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(10):17055-60.
  • 20. Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod. 1998;24(7):468-71.
  • 21. Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod. 2004;30(6):429-31.
  • 22. Santos AD, Araujo EB, Yukimitu K, Barbosa JC, Moraes JC. Setting time and thermal expansion of two endodontic cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):e77-9.
  • 23. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. Journal of endodontics. 2010;36(1):16-27.
  • 24. Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731-6.
  • 25. Pereira CL, Cenci MS, Demarco FF. Sealing ability of MTA, Super EBA, Vitremer and amalgam as root-end filling materials. Braz Oral Res. 2004;18(4):317-21.
  • 26. Ribeiro DA, Sugui MM, Matsumoto MA, Duarte MAH, Marques MEA, Salvadori DMF. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006;101(2):258-61.
  • 27. Sipert CR, Hussne RP, Nishiyama CK, Torres SA. In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland cement and EndoRez. Int Endod J. 2005;38(8):539-43.
  • 28. Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate. Journal of endodontics. 2014;40(10):1632-7.
  • 29. DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. Journal of endodontics. 2015;41(3):385-8.
  • 30. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. Journal of applied biomaterials & functional materials. 2015;13(1):43-60.
  • 31. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. The Scientific World Journal. 2014;2014.
  • 32. Erfanparast L, Iranparvar P, Vafaei A. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry. 2018;19(3):197-203.
  • 33. Eid AA, Gosier JL, Primus CM, Hammond BD, Susin LF, Pashley DH, et al. In vitro biocompatibility and oxidative stress profiles of different hydraulic calcium silicate cements. Journal of endodontics. 2014;40(2):255-60.
  • 34. Kramer PR, Woodmansey KF, White R, Primus CM, Opperman LA. Capping a pulpotomy with calcium aluminosilicate cement: comparison to mineral trioxide aggregates. Journal of endodontics. 2014;40(9):1429-34.
  • 35. Assmann E, Scarparo RK, Böttcher DE, Grecca FS. Dentin bond strength of two mineral trioxide aggregate–based and one epoxy resin–based sealers. Journal of endodontics. 2012;38(2):219-21.
  • 36. Silva EJ, Rosa TP, Herrera DR, Jacinto RC, Gomes BP, Zaia AA. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. Journal of endodontics. 2013;39(2):274-7.
  • 37. Sagsen B, Ustün Y, Demirbuga S, Pala K. Push‐out bond strength of two new calcium silicate‐based endodontic sealers to root canal dentine. International endodontic journal. 2011;44(12):1088-91.
  • 38. Tanalp J, Dikbas I, Malkondu Ö, Ersev H, Güngör T, Bayırlı G. Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dental Traumatology. 2012;28(6):457-64.
  • 39. Siboni F, Taddei P, Prati C, Gandolfi MG. Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int Endod J. 2017;50 Suppl 2:e83-e94.
  • 40. Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, et al. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2018;44(1):126-32.
  • 41. Camilleri J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J Endod. 2015;41(7):1139-45.
  • 42. Govindaraju L, Neelakantan P, Gutmann JL. Effect of root canal irrigating solutions on the compressive strength of tricalcium silicate cements. Clin Oral Investig. 2017;21(2):567-71.
  • 43. Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359-66.
  • 44. Sun Q, Meng M, Steed JN, Sidow SJ, Bergeron BE, Niu LN, et al. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent. 2021;104:103530.
  • 45. Özata MY, Falakaloğlu S, Plotino G, Adıgüzel Ö. The micro-shear bond strength of new endodontic tricalcium silicate-based putty: An in vitro study. Aust Endod J. 2022.
  • 46. İpek İ, Ünal M, Güner A, Candan M. Push-out bond strength of Biodentine, MTA repair HP, and a new pre-mixed NeoPutty bioactive cement: scanning electron microscopy energy dispersive X-ray spectroscopy analysis. Journal of the Australian Ceramic Society. 2022;58(1):171-9.
  • 47. Da Fonseca T, Da Silva G, Tanomaru‐Filho M, Sasso‐Cerri E, Guerreiro‐Tanomaru J, Cerri PS. In vivo evaluation of the inflammatory response and IL‐6 immunoexpression promoted by Biodentine and MTA Angelus. International Endodontic Journal. 2016;49(2):145-53.
  • 48. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dental materials. 2013;29(5):580-93.
  • 49. Bani M, Sungurtekin-Ekçi E, Odabaş ME. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study. Biomed Res Int. 2015;2015:359275.
  • 50. Bhavya B, Sadique M, Simon EP, Ravi S, Lal S. Spectrophotometric analysis of coronal discoloration induced by white mineral trioxide aggregate and Biodentine: An in vitro study. Journal of Conservative Dentistry: JCD. 2017;20(4):237.
  • 51. Jang Y-E, Lee B-N, Koh J-T, Park Y-J, Joo N-E, Chang H-S, et al. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restorative dentistry & endodontics. 2014;39(2):89-94.
  • 52. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P. Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. Journal of endodontics. 2015;41(11):1805-17.
  • 53. Singh H, Kaur M, Markan S, Kapoor P. Biodentine: A promising dentin substitute. J Interdiscipl Med Dent Sci. 2014;2(140):2.
  • 54. Kim J, Song Y-S, Min K-S, Kim S-H, Koh J-T, Lee B-N, et al. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restorative dentistry & endodontics. 2016;41(1):29-36.
  • 55. Zhou H-m, Shen Y, Wang Z-j, Li L, Zheng Y-f, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. Journal of endodontics. 2013;39(4):478-83.
  • 56. Han L, Okiji T. Bioactivity evaluation of three calcium silicate‐based endodontic materials. International endodontic journal. 2013;46(9):808-14.
  • 57. Bani M, Aktaş N, Çınar Ç, Odabaş ME. The clinical and radiographic success of primary molar pulpotomy using Biodentine™ and mineral trioxide aggregate: a 24-month randomized clinical trial. Pediatric dentistry. 2017;39(4):284-8.
  • 58. Tran X, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, et al. Effect of a calcium-silicate-based restorative cement on pulp repair. Journal of dental research. 2012;91(12):1166-71.
  • 59. Niranjani K, Prasad MG, Vasa AAK, Divya G, Thakur MS, Saujanya K. Clinical evaluation of success of primary teeth pulpotomy using mineral trioxide aggregate®, laser and biodentineTM-an in vivo study. Journal of clinical and diagnostic research: JCDR. 2015;9(4):ZC35.
  • 60. Juneja P, Kulkarni S. Clinical and radiographic comparison of biodentine, mineral trioxide aggregate and formocresol as pulpotomy agents in primary molars. European Archives of Paediatric Dentistry. 2017;18(4):271-8.
  • 61. Sushynski JM, Zealand CM, Botero TM, Boynton JR, Majewski RF, Shelburne CE, et al. Comparison of gray mineral trioxide aggregate and diluted formocresol in pulpotomized primary molars: a 6-to 24-month observation. Pediatric dentistry. 2012;34(5):120E-8E.
  • 62. Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. Journal of endodontics. 2012;38(9):1220-6.
  • 63. Gandolfi MG, Siboni F, Polimeni A, Bossù M, Riccitiello F, Rengo S, et al. In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dentistry Journal. 2013;1(4):41-60.
  • 64. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. Journal of endodontics. 2013;39(3):380-4.
  • 65. Yoldaş SE, Bani M, Atabek D, Bodur H. Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. Journal of endodontics. 2016;42(12):1815-8.
  • 66. Madfa AA, Al-Sanabani FA, Al-Kudami NHA-Q. Endodontic repair filling materials: A review article. British Journal of Medicine and Medical Research. 2014;4(16):3059.
  • 67. Chang SW. Chemical composition and porosity characteristics of various calcium silicate-based endodontic cements. Bioinorganic chemistry and applications. 2018;2018.
  • 68. Hashem AAR, Amin SAW. The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. Journal of endodontics. 2012;38(2):245-9.
  • 69. Saghiri MA, Garcia‐Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push‐out bond strength of a nano‐modified mineral trioxide aggregate. Dental Traumatology. 2013;29(4):323-7.
  • 70. Çelik D, Er K, Serper A, Taşdemir T, Ceyhanlı KT. Push-out bond strength of three calcium silicate cements to root canal dentine after two different irrigation regimes. Clinical oral investigations. 2014;18(4):1141-6.
  • 71. El Sayed M, Saeed M. In vitro comparative study of sealing ability of Diadent BioAggregate and other root-end filling materials. Journal of conservative dentistry: JCD. 2012;15(3):249.
  • 72. Park J-W, Hong S-H, Kim J-H, Lee S-J, Shin S-J. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;109(1):155-8.
  • 73. Chung C-R, Kim E, Shin S-J. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. Journal of Korean academy of conservative dentistry. 2010;35(6):473-8.
  • 74. Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. International endodontic journal. 2015;48(4):323-32.
  • 75. Damas BA, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. Journal of endodontics. 2011;37(3):372-5.
  • 76. Zhang S, Yang X, Fan M. BioAggregate and iR oot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. International endodontic journal. 2013;46(10):923-9.
  • 77. Shi S, Bao Z, Liu Y, Zhang D, Chen X, Jiang L, et al. Comparison of in vivo dental pulp responses to capping with iR oot BP Plus and mineral trioxide aggregate. International endodontic journal. 2016;49(2):154-60.
  • 78. Alsalleeh F, Chung N, Stephenson L. Antifungal activity of endosequence root repair material and mineral trioxide aggregate. Journal of endodontics. 2014;40(11):1815-9.
  • 79. Rodríguez-Lozano FJ, López-García S, García-Bernal D, Sanz JL, Lozano A, Pecci-Lloret MP, et al. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig. 2021;25(8):5009-24.
  • 80. Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, et al. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J Endod. 2021;47(12):1896-906.
  • 81. Karadas M, Atıcı MG. Bond strength and adaptation of pulp capping materials to dentin. Microsc Res Tech. 2020;83(5):514-22.
  • 82. Qureshi A, E S, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res. 2014;8(1):316-21.
  • 83. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. Solubility and pH of direct pulp capping materials: a comparative study. Journal of Applied Biomaterials & Functional Materials. 2015;13(2):181-5.
  • 84. Yamamoto S, Han L, Noiri Y, Okiji T. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. International endodontic journal. 2017;50:e73-e82.
  • 85. Hess D, Solomon E, Spears R, He J. Retreatability of a bioceramic root canal sealing material. Journal of endodontics. 2011;37(11):1547-9.
  • 86. Ribeiro DA, Matsumoto MA, Duarte MAH, Marques MEA, Salvadori DMF. In vitro biocompatibility tests of two commercial types of mineral trioxide aggregate. Brazilian oral research. 2005;19(3):183-7.
  • 87. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, et al. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. Journal of endodontics. 2011;37(5):673-7.
  • 88. Yang Q, Troczynski T, Liu D-M. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials. 2002;23(13):2751-60.
  • 89. Shokouhinejad N, Hoseini A, Gorjestani H, Shamshiri AR. The effect of different irrigation protocols for smear layer removal on bond strength of a new bioceramic sealer. Iranian Endodontic Journal. 2013;8(1):10.
  • 90. Mukhtar-Fayyad D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2011;112(6):e137-e42.
  • 91. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate–based canal filling material. International endodontic journal. 2010;43(9):769-74.
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Reviews
Authors

Müge Ali Metiner 0000-0002-2239-3410

Oya Aktören 0000-0002-4005-5925

Publication Date December 30, 2023
Submission Date March 16, 2023
Published in Issue Year 2023 Volume: 2 Issue: 3

Cite

Vancouver Ali Metiner M, Aktören O. Çocuk Diş Hekimliğinde Biyoseramik Materyaller. Akd Dent J. 2023;2(3):151-6.

Founded: 2022

Period: 3 Issues Per Year

Publisher: Akdeniz University