İnceleme Makalesi
BibTex RIS Kaynak Göster

Rhododendron luteum ve Rhododendron ponticum Çiçek Özlerinin Artemia salina Larvaları Üzerindeki Potansiyel Toksisitesinin ve Biyokimyasal Aktivitelerinin Karşılaştırmalı Değerlendirilmesi

Yıl 2024, Cilt: 10 Sayı: 1, 39 - 50

Öz

Bu çalışmanın odak noktası, Artemia salina (tuzlu su karidesi) instar IV larvaları üzerindeki farklı Rhododendron türlerinin (Rhododendron luteum ve Rhododendron ponticum) farklı konsantrasyonlarda toksisitelerini karşılaştırmalı araştırmaktır. Çünkü, Rhododendron türleri biyoaktif bileşiklerce zengin bir familyaya aittir ki bu da onları oldukça zehirli hale getirmektedir. İki farklı Rhododendron türlerinin instar IV larvaların ölümü oranı üzerinde etkisini, oksidatif stres oluşturma potansiyelini ve larvaların savunma kapasitesini araştırdık. Larvalar hücre kültür plaklarında 48-96 saat boyunca yapay deniz suyunda Rhododendron özütlerine farklı konsantrasyonlarda maruz bırakıldı. Stereomikroskop altında her bir konsantrasyonda ölüm oranı ve morfolojik değişklikler değerlendirildi. Çalışmamızda, Rhododendron türlerinin A. salina instar IV larvaları üzerinde oldukça toksik olduğu ve yine R. ponticum türünün R. luteum'a göre daha toksik etkili olduğu görülmüştür. Özellikle, 200 µg/mL ve üstü konsantrasyonda her iki Rhododendron türünde hücre hasarını göstren MDA seviyesi anlamılı bir şekilde artmıştır (P<0.05). Buna karşın oksidatif stresin etkisini azaltmak için savunma stratejisi olan SOD seviyesi Rhododendron türlerinde artan konsantrasyonla azalmakla birlikte sadece 800-3200 µg/mL konsantrasyon aralığında anlamlıdır (P<0,05).

Destekleyen Kurum

ORDU ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

Teşekkür

This study was supported by Ordu University Scientific Research Projects Coordination Unit (ODÜ, BAP, Project Number: B-2318).

Kaynakça

  • Ates, M., Danabas, D., Ertit Tastan, B., Unal, I., Cicek Cimen, I. C., Aksu, O., ... & Arslan, Z. (2020). Assessment of oxidative stress on Artemia salina and Daphnia magna after exposure to Zn and ZnO nanoparticles. Bulletin of Environmental Contamination and Toxicology, 104, 206-214.
  • Ates, M., Daniels, J., Arslan, Z., & Farah, I. O. (2013a). Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental monitoring and assessment, 185, 3339-3348.
  • Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013b). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental science: Processes & impacts, 15(1), 225-233.
  • Ates, M., Demir, V., Arslan, Z., Daniels, J., Farah, I. O., & Bogatu, C. (2015). Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae. Environmental toxicology, 30(1), 109-118.
  • Bilir, E. K., Tutun, H., Sevin, S., Kısmalı, G., & Yarsan, E. (2018)a. Cytotoxic effects of Rhododendron ponticum L. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3).
  • Bilir, E., Sevin, S. E. D. A. T., Tutun, H., Alcigir, M., & Yarsan, E. N. D. E. R. (2018)b. Cytotoxıc and anti-proliferative effects of Rhododendron ponticum L. extract on rat glioma cell line (F98). International Journal of Pharmaceutical Sciences and Research, 9(5).
  • Cazenave, J., de los Angeles Bistoni, M., Pesce, S. F., & Wunderlin, D. A. (2006). Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic toxicology, 76(1), 1-12.
  • Clinton, B. D., & Vose, J. M. (1996). Effects of Rhododendron maximum L. on Acer rubrum L. seedling establishment. Castanea, 38-45.
  • Çolak, A.H. (1997). Rhododendron ponticum L. (Mor Çiçekli Ormangülü)’un silvikültürel özellikleri üzerine araştırmalar. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği, İstanbul.
  • Dağlıoğlu, Y., & Çelebi, M. S. (2015). The evaluation of the acute toxic effects of Polyvinylferrocenium supported platinum nanoparticles on Artemia salina Brine shrimp. Biological Diversity and Conservation, 8(3), 304-312.
  • Dağlıoğlu, Y., Çelebi, M. S., & Önalan, Ș. (2016a). Determination of acute toxic effects of poly (vinylferrocenium) supported palladium nanoparticle (Pd/PVF+) on Artemia salina.
  • Dağlıoğlu, Y., Altınok, İ., İlHAN, H., & Sokmen, M. (2016b). Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina). Acta Biologica Turcica, 29(1), 6-13.
  • Dağlıoğlu, Y., Öztürk, B. Y., & Khatami, M. (2023). Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microscopy Research and Technique, 86(6), 669-685.
  • Demir, S., Turan I & Aliyazicioglu, Y. (2016). Selective cytotoxic effect of Rhododendron luteum extract on human colon and liver cancer cells, Journal of Balkan Union of Oncology, 21(4), 883-888.
  • Gambardella, C., Mesarič, T., Milivojević, T., Sepčić, K., Gallus, L., Carbone, S., ... & Faimali, M. (2014). Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environmental monitoring and assessment, 186, 4249-4259.
  • George, B. P., & Abrahamse, H. (2019). Increased oxidative stress induced by rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxidative medicine and cellular longevity, 2019(1), 6797921.
  • Harwig, J., & Scott, P. (1971). Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Applied microbiology, 21(6), 1011-1016.
  • Kamalakannan, M., Rajendran, D., Thomas, J., & Chandrasekaran, N. (2024). Synergistic impact of nanoplastics and nanopesticides on Artemia salina and toxicity analysis. Nanoscale Advances.
  • Kulaç, Ş. (2004). Karadeniz bölgesi kayın ekosisteminde uygulanan farklı diri örtü (Rhododendron Spp.) mücadele yöntemlerinin beşinci yılında toprak altı ve toprak üstü yetişme ortamı faktörleri üzerine etkisi. Yüksek Lisans Tezi, Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Bolu.
  • Mesarič, T., Gambardella, C., Milivojević, T., Faimali, M., Drobne, D., Falugi, C., ... & Sepčić, K. (2015). High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquatic Toxicology, 163, 121-129.
  • Mirzaei, M., & Mirzaei, A. (2013). Comparison of the Artemia salina and Artemia uramiana bioassays for toxicity of 4 Iranian medicinal plants. Int Res J Biol Sci, 2(3), 49-54.
  • Neary, D. G., Douglass, J. E., Ruehle, J. L., & Fox, W. (1984). Converting rhododendron-laurel thickets to white pine with picloram and mycorrhizae-inoculated seedlings. Southern Journal of Applied Forestry, 8(3), 163-168.
  • Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental pollution, 144(2), 453-462.
  • Popescu, R & Kopp, B. (2013). The genus Rhododendron: An ethnopharmacological and toxicological review. Journal of Ethnopharmacology, 147(1), 42–62.
  • Tasdemir, D., Demirci, B., Demirci, F., Dönmez, A. A., Baser, K. H. C., & Rüedia, P. (2003). Analysis of the volatile components of five Turkish Rhododendron species by headspace solid-phase microextraction and GC-MS (HS-SPME-GC-MS). Zeitschrift Für Naturforschung C, 58(11-12), 797-803.
  • Varó, I., Perini, A., Torreblanca, A., Garcia, Y., Bergami, E., Vannuccini, M. L., & Corsi, I. (2019). Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Science of the Total Environment, 675, 570-580.
  • Wang, C., Jia, H., Zhu, L., Zhang, H., & Wang, Y. (2017). Toxicity of α-Fe2O3 nanoparticles to Artemia salina cysts and three stages of larvae. Science of the Total Environment, 598, 847-855.
  • Zhu, S., Xue, M. Y., Luo, F., Chen, W. C., Zhu, B., & Wang, G. X. (2017). Developmental toxicity of Fe3O4 nanoparticles on cysts and three larval stages of Artemia salina. Environmental pollution, 230, 683-691.
  • Zhu, S., Zhu, B., Huang, A., Hu, Y., Wang, G., & Ling, F. (2016). Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses. Journal of hazardous materials, 318, 650-662.

Comparative Assessment of Potential Toxicity and Biochemical Properties of Rhododendron luteum and Rhododendron ponticum Flower Extracts on Artemia salina

Yıl 2024, Cilt: 10 Sayı: 1, 39 - 50

Öz

The focus of this study was to comparatively investigate the toxicity of different Rhododendron species (Rhododendron luteum and Rhododendron ponticum) at different concentrations on instar IV larvae of Artemia salina (Brine shrimp). Because Rhododendron species belong to a Ericaceae family rich in bioactive compounds, which makes them highly poisonous. We investigated the effect of two different Rhododendron species on the mortality rate of instar IV larvae, the potential to induce oxidative stress, and the defense capacity of the larvae. Larvae were exposed to different concentrations of Rhododendron extracts in artificial seawater for 48–96 h in cell culture plates. Mortality rate and morphological changes were evaluated at each concentration under a stereomicroscope. In our study, Rhododendron species were found to be highly toxic to A. salina instar IV larvae and R. ponticum was more toxic than R. luteum. Particularly, the level of MDA, which indicates cell damage, increased significantly in both Rhododendron species at a concentration of 200 µg/mL and above (P<0.05). On the other hand, the level of SOD, which is a defense strategy to reduce the effect of oxidative stress, decreased with increasing concentration in Rhododendron species, but was significant only in the concentration range of 800-3200 µg/mL (P<0.05).

Kaynakça

  • Ates, M., Danabas, D., Ertit Tastan, B., Unal, I., Cicek Cimen, I. C., Aksu, O., ... & Arslan, Z. (2020). Assessment of oxidative stress on Artemia salina and Daphnia magna after exposure to Zn and ZnO nanoparticles. Bulletin of Environmental Contamination and Toxicology, 104, 206-214.
  • Ates, M., Daniels, J., Arslan, Z., & Farah, I. O. (2013a). Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental monitoring and assessment, 185, 3339-3348.
  • Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013b). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental science: Processes & impacts, 15(1), 225-233.
  • Ates, M., Demir, V., Arslan, Z., Daniels, J., Farah, I. O., & Bogatu, C. (2015). Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae. Environmental toxicology, 30(1), 109-118.
  • Bilir, E. K., Tutun, H., Sevin, S., Kısmalı, G., & Yarsan, E. (2018)a. Cytotoxic effects of Rhododendron ponticum L. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3).
  • Bilir, E., Sevin, S. E. D. A. T., Tutun, H., Alcigir, M., & Yarsan, E. N. D. E. R. (2018)b. Cytotoxıc and anti-proliferative effects of Rhododendron ponticum L. extract on rat glioma cell line (F98). International Journal of Pharmaceutical Sciences and Research, 9(5).
  • Cazenave, J., de los Angeles Bistoni, M., Pesce, S. F., & Wunderlin, D. A. (2006). Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic toxicology, 76(1), 1-12.
  • Clinton, B. D., & Vose, J. M. (1996). Effects of Rhododendron maximum L. on Acer rubrum L. seedling establishment. Castanea, 38-45.
  • Çolak, A.H. (1997). Rhododendron ponticum L. (Mor Çiçekli Ormangülü)’un silvikültürel özellikleri üzerine araştırmalar. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği, İstanbul.
  • Dağlıoğlu, Y., & Çelebi, M. S. (2015). The evaluation of the acute toxic effects of Polyvinylferrocenium supported platinum nanoparticles on Artemia salina Brine shrimp. Biological Diversity and Conservation, 8(3), 304-312.
  • Dağlıoğlu, Y., Çelebi, M. S., & Önalan, Ș. (2016a). Determination of acute toxic effects of poly (vinylferrocenium) supported palladium nanoparticle (Pd/PVF+) on Artemia salina.
  • Dağlıoğlu, Y., Altınok, İ., İlHAN, H., & Sokmen, M. (2016b). Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina). Acta Biologica Turcica, 29(1), 6-13.
  • Dağlıoğlu, Y., Öztürk, B. Y., & Khatami, M. (2023). Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microscopy Research and Technique, 86(6), 669-685.
  • Demir, S., Turan I & Aliyazicioglu, Y. (2016). Selective cytotoxic effect of Rhododendron luteum extract on human colon and liver cancer cells, Journal of Balkan Union of Oncology, 21(4), 883-888.
  • Gambardella, C., Mesarič, T., Milivojević, T., Sepčić, K., Gallus, L., Carbone, S., ... & Faimali, M. (2014). Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environmental monitoring and assessment, 186, 4249-4259.
  • George, B. P., & Abrahamse, H. (2019). Increased oxidative stress induced by rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxidative medicine and cellular longevity, 2019(1), 6797921.
  • Harwig, J., & Scott, P. (1971). Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Applied microbiology, 21(6), 1011-1016.
  • Kamalakannan, M., Rajendran, D., Thomas, J., & Chandrasekaran, N. (2024). Synergistic impact of nanoplastics and nanopesticides on Artemia salina and toxicity analysis. Nanoscale Advances.
  • Kulaç, Ş. (2004). Karadeniz bölgesi kayın ekosisteminde uygulanan farklı diri örtü (Rhododendron Spp.) mücadele yöntemlerinin beşinci yılında toprak altı ve toprak üstü yetişme ortamı faktörleri üzerine etkisi. Yüksek Lisans Tezi, Abant İzzet Baysal Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Bolu.
  • Mesarič, T., Gambardella, C., Milivojević, T., Faimali, M., Drobne, D., Falugi, C., ... & Sepčić, K. (2015). High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquatic Toxicology, 163, 121-129.
  • Mirzaei, M., & Mirzaei, A. (2013). Comparison of the Artemia salina and Artemia uramiana bioassays for toxicity of 4 Iranian medicinal plants. Int Res J Biol Sci, 2(3), 49-54.
  • Neary, D. G., Douglass, J. E., Ruehle, J. L., & Fox, W. (1984). Converting rhododendron-laurel thickets to white pine with picloram and mycorrhizae-inoculated seedlings. Southern Journal of Applied Forestry, 8(3), 163-168.
  • Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., & Van Stappen, G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental pollution, 144(2), 453-462.
  • Popescu, R & Kopp, B. (2013). The genus Rhododendron: An ethnopharmacological and toxicological review. Journal of Ethnopharmacology, 147(1), 42–62.
  • Tasdemir, D., Demirci, B., Demirci, F., Dönmez, A. A., Baser, K. H. C., & Rüedia, P. (2003). Analysis of the volatile components of five Turkish Rhododendron species by headspace solid-phase microextraction and GC-MS (HS-SPME-GC-MS). Zeitschrift Für Naturforschung C, 58(11-12), 797-803.
  • Varó, I., Perini, A., Torreblanca, A., Garcia, Y., Bergami, E., Vannuccini, M. L., & Corsi, I. (2019). Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Science of the Total Environment, 675, 570-580.
  • Wang, C., Jia, H., Zhu, L., Zhang, H., & Wang, Y. (2017). Toxicity of α-Fe2O3 nanoparticles to Artemia salina cysts and three stages of larvae. Science of the Total Environment, 598, 847-855.
  • Zhu, S., Xue, M. Y., Luo, F., Chen, W. C., Zhu, B., & Wang, G. X. (2017). Developmental toxicity of Fe3O4 nanoparticles on cysts and three larval stages of Artemia salina. Environmental pollution, 230, 683-691.
  • Zhu, S., Zhu, B., Huang, A., Hu, Y., Wang, G., & Ling, F. (2016). Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses. Journal of hazardous materials, 318, 650-662.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Olarak Sürdürülebilir Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Yeşim Dağlıoğlu 0000-0001-8740-1162

Erken Görünüm Tarihi 19 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 22 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APA Dağlıoğlu, Y. (2024). Comparative Assessment of Potential Toxicity and Biochemical Properties of Rhododendron luteum and Rhododendron ponticum Flower Extracts on Artemia salina. Akademia Doğa Ve İnsan Bilimleri Dergisi, 10(1), 39-50.

Akademia Doğa ve İnsan Bilimleri Dergisi, yayın faaliyetini sadece akademik öncelikler doğrultusunda yapmaktadır. Bu nedenle yazarlardan herhangi bir isimde yayın ücreti almamakta ve tüm okuyuculara ücretsiz olarak ulaşmaktadır.