Amaç: Bu çalışmanın amacı; enfekte implant yüzeyini
en uygun şekilde detoksifiye edecek ve aynı zamanda
yüzey biyouyumluluğunu koruyarak, iyileşme sürecinde
osteoblastların yeniden osseointegrasyonunu kolaylaştıracak
Er,Cr:YSGG lazer uygulama protokollerini ortaya koymaktır.
Bu amaçla lazer ile ilgili dört farklı değişken (güç-W, frekansHz,
mesafe-mm ve süre-sn.) üç farklı düzeyde incelendi.
Materyal ve Metot: S.aureus ile enfecte edilen Grade
5 titanium diskler Erbium Chromium-doped YttriumScandium-Gallium-Garnet
(Er,Cr:YSGG) lazer ile farklı
protokollerde detoksifiye edildi. Lazer uygulamasından
sonra, titanyum disklerin yüzey morfolojileri, yüzey
pürüzlülükleri, 24 saat ve 48 saat sonundaki osteoblast hücre
proliferasyonları (SaOs-2 hücre kültürü) ve osteoblast hücre
morfolojileri incelendi.
Bulgular: Çalışma sonucunda; titanyum disk yüzeyinde
en fazla morfolojik değişikliğe neden olan protokolün güç
yoğunluğunun (W/cm2) en fazla olduğu test 8 grubu (3 W- 25
Hz-2 mm-45 sn) olduğu görüldü. Bu protokolde yüzeydeki
ergime ve düzleşmenin en fazla, yüzey pürüzlülük değerinin
(Ra) ise en düşük olduğu belirlendi. Hücresel proliferasyon
değerleri incelendiğinde, 48 saat sonundaki proliferasyon
değerlerine göre test 1 ve test 7 gruplarındaki proliferasyon
değerlerinin kontrol grubuna göre istatistiksel olarak anlamlı
derecede arttığı gösterildi. Ayrıca, bu iki test grubunun (test
1 ve test 7) Ra değerleri incelendiğinde, kontrol grubuna
oldukça benzer Ra değerlerine sahip oldukları belirlendi.
Sonuç: Sonuçta, yüzey morfolojisinin değişiminde en etkili
parametrenin güç yoğunluğu olduğu bununda doğrudan
uygulama mesafesi ile ilgili olduğu görüldü. Ayrıca yüzey
pürüzlülüğünü neredeyse değiştirmeden, ilk haline yakın
olacak şekilde koruyarak, yüzey biyouyumluluğunu arttıran
uygulama koşullarının reosseointegrayon sürecinde hücresel
proliferasyona olumlu katkı sağladığı görüldü
[1] Mombelli A, Decaillet F. The characteristics
of biofilms in peri-implant disease. J Clin
Periodontol. 2011;38 Suppl 11:203-13.
[2] Salvi GE, Furst MM, Lang NP, Persson
GR. One-year bacterial colonization patterns
of Staphylococcus aureus and other bacteria
at implants and adjacent teeth. Clin Oral
Implants Res. 2008;19:242-8.
[3] Okayasu K, Wang HL. Decision tree for the
management of periimplant diseases. Implant
Dent. 2011;20:256-61.
[4] Persson LG, Mouhyi J, Berglundh T,
Sennerby L, Lindhe J. Carbon dioxide laser
and hydrogen peroxide conditioning
in the treatment of periimplantitis:
an experimental study in the dog. Clin
Implant Dent Relat Res. 2004;6:230-8.
[5] Renvert S, Lindahl C, Roos Jansaker
AM, Persson GR. Treatment of
peri-implantitis using an Er:YAG laser
or an air-abrasive device: a randomized
clinical trial. J Clin Periodontol.
2011;38:65-73.
[6] Romanos GE, Gupta B, Yunker M, Romanos
EB, Malmstrom H. Lasers use in dental
implantology. Implant Dent. 2013;22:282-8.
[7] Javed F, Hussain HA, Romanos GE.
Re-stability of dental implants following
treatment of peri-implantitis. Interv Med
Appl Sci. 2013;5:116-21.
[8] Schwarz F, Rothamel D, Sculean A,
Georg T, Scherbaum W, Becker J. Effects
of an Er:YAG laser and the Vector
ultrasonic system on the biocompatibility
of titanium implants in cultures of human
osteoblast-like cells. Clin Oral Implants Res.
2003;14:784-92.
[9] Aoki A, Sasaki KM, Watanabe H,
Ishikawa I. Lasers in nonsurgical
periodontal therapy. Periodontol
2000. 2004;36:59-97.
[10] Asghar A, Abdul Raman AA, Daud WM.
A comparison of central composite
design and Taguchi method for optimizing
Fenton process. Scientific Worl Journal.
2014;2014:869120.
[11] Schwarz F, Sculean A, Romanos G, Herten
M, Horn N, Scherbaum W, et al.
Influence of different treatment approaches
on the removal of early plaque biofilms
and the viability of SAOS2
osteoblasts grown on titanium implants.
Clin Oral Investig. 2005;9:111-7.
[12] Miller RJ. Treatment of the contaminated
implant surface using the Er,Cr:YSGG
laser. Implant Dent. 2004;13:165-70.
[13] Azzeh MM. Er,Cr:YSGG laserassisted
surgical treatment of peri-implantitis
with 1-year reentry and 18-month follow-up.
J Periodontol. 2008;79:2000-5.
[14] Huang HH, Chuang YC, Chen ZH,
Lee TL, Chen CC. Improving the
initial biocompatibility of a titanium
surface using an Er,Cr:YSGG
laser-powered hydrokinetic system.
Dent Mater. 2007;23:410-4.
[15] Natto ZS, Aladmawy M, Levi PA, Jr., Wang
HL. Comparison of the efficacy of
different types of lasers for the treatment
of peri-implantitis: a systematic
review. Int J Oral Maxillofac Implants.
2015;30:338-45.
[16] Romanos G, Crespi R, Barone A,
Covani U. Osteoblast attachment on
titanium disks after laser irradiation. Int J
Oral Maxillofac Implants. 2006;21:232-6.
[17] Park JH, Heo SJ, Koak JY, Kim SK,
Han CH, Lee JH. Effects of laser irradiation
on machined and anodized titanium disks.
Int J Oral Maxillofac Implants.
2012;27:265-72.
[18] Schwarz F, Nuesry E, Bieling K,
Herten M, Becker J. Influence of an erbium,
chromium-doped yttrium, scandium,
gallium, and garnet (Er,Cr:YSGG) laser on
the reestablishment of the
biocompatibility of contaminated
titanium implant surfaces.
J Periodontol. 2006;77:1820-7.
[19] Ercan E, Arin T, Kara L, Candirli C, Uysal
C. Effects of Er,Cr:YSGG laser irradiation
on the surface characteristics of titanium
discs: an in vitro study. Lasers Med Sci.
2014;29:875-80.
[20] Ercan E, Candirli C, Arin T, Kara L,
Uysal C. The effect of Er,Cr:YSGG
laser irradiation on titanium
discs with microtextured surface morphology.
Lasers Med Sci. 2015;30:11-5.
[21] Kreisler M, Kohnen W, Marinello C, Gotz H,
Duschner H, Jansen B, et al. Bactericidal
effect of the Er:YAG laser on dental implant
surfaces: an in vitro study. J Periodontol.
2002;73:1292-8.
[22] Wennerberg A, Albrektsson T.
Effects of titanium surface topography
on bone integration: a systematic review.
Clin Oral Implants
Res. 2009;20 Suppl 4:172-84.
[23] Shalabi MM, Gortemaker A, Van’t Hof MA,
Jansen JA, Creugers NH. Implant surface
roughness and bone healing: a systematic
review. J Dent Res. 2006;85:496-500.
[24] Shibli JA, Grassi S, de Figueiredo LC,
Feres M, Marcantonio E, Jr., Iezzi G, et
al. Influence of implant surface
topography on early osseointegration:
a histological study in human jaws.
J Biomed Mater Res B Appl Biomater.
2007;80:377-85.
[25] Sul YT. The significance of the surface
properties of oxidized titanium to the
bone response: special emphasis
on potential biochemical bonding
of oxidized titanium implant. Biomaterials.
2003;24:3893-907.
[26] Ayobian-Markazi N, Karimi M,
Safar-Hajhosseini A. Effects of Er:
YAG laser irradiation on wettability,
surface roughness, and biocompatibility
of SLA titanium surfaces: an
in vitro study. Lasers Med Sci. 2015;30:561-6.
ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION
Purpose: The aim of the current study was to establish
protocols for Erbium Chromium-doped Yttrium-ScandiumGallium-Garnet
(Er,Cr:YSGG) laser application for
detoxification of implant surface, preservation of surface
biocompatibility and enhancement of osseointegration.
In this purpose, four different variables including power
(W), frequency (Hz), distance (mm) and duration (sn) were
investigated at 3 different levels.
Material and Methods: Grade 5 titanium discs infected by
S.aureus were detoxified with Er, Cr: YSGG laser according
to various protocols. After laser application, surface
morphology and surface roughness of titanium discs as well
as cellular morphology and proliferation of osteoblasts-like
cells at the end of 24 and 48 hours (SaOs-2 cell culture) were
examined.
Results: The most remarkable changes on the surface
of titanium discs were observed in group Test 8 (3 W-25
Hz-2 mm-45 sn) which was exposed to the highest power
density (W/cm2).. In this protocol, melting and flattening
on the surface was observed most prominently and surface
roughness (Ra) was lowest. Proliferation indicators in groups
Test 1 and Test 7 were found to be statistically significantly
increased compared to the control group at the end of 48
hours. Furthermore, Ra values of these 2 groups (Test 1 and
Test 7) were similar to that of control group.
Discussion: To conclude, our results have shown that power
intensity, which is linked with distance, was the leading
parameter for alteration of surface morphology. We suggest
that cellular proliferation during reosseointegration is
facilitated by conditions that maintain surface roughness in
its initial form and amplify surface biocompatibility.
[1] Mombelli A, Decaillet F. The characteristics
of biofilms in peri-implant disease. J Clin
Periodontol. 2011;38 Suppl 11:203-13.
[2] Salvi GE, Furst MM, Lang NP, Persson
GR. One-year bacterial colonization patterns
of Staphylococcus aureus and other bacteria
at implants and adjacent teeth. Clin Oral
Implants Res. 2008;19:242-8.
[3] Okayasu K, Wang HL. Decision tree for the
management of periimplant diseases. Implant
Dent. 2011;20:256-61.
[4] Persson LG, Mouhyi J, Berglundh T,
Sennerby L, Lindhe J. Carbon dioxide laser
and hydrogen peroxide conditioning
in the treatment of periimplantitis:
an experimental study in the dog. Clin
Implant Dent Relat Res. 2004;6:230-8.
[5] Renvert S, Lindahl C, Roos Jansaker
AM, Persson GR. Treatment of
peri-implantitis using an Er:YAG laser
or an air-abrasive device: a randomized
clinical trial. J Clin Periodontol.
2011;38:65-73.
[6] Romanos GE, Gupta B, Yunker M, Romanos
EB, Malmstrom H. Lasers use in dental
implantology. Implant Dent. 2013;22:282-8.
[7] Javed F, Hussain HA, Romanos GE.
Re-stability of dental implants following
treatment of peri-implantitis. Interv Med
Appl Sci. 2013;5:116-21.
[8] Schwarz F, Rothamel D, Sculean A,
Georg T, Scherbaum W, Becker J. Effects
of an Er:YAG laser and the Vector
ultrasonic system on the biocompatibility
of titanium implants in cultures of human
osteoblast-like cells. Clin Oral Implants Res.
2003;14:784-92.
[9] Aoki A, Sasaki KM, Watanabe H,
Ishikawa I. Lasers in nonsurgical
periodontal therapy. Periodontol
2000. 2004;36:59-97.
[10] Asghar A, Abdul Raman AA, Daud WM.
A comparison of central composite
design and Taguchi method for optimizing
Fenton process. Scientific Worl Journal.
2014;2014:869120.
[11] Schwarz F, Sculean A, Romanos G, Herten
M, Horn N, Scherbaum W, et al.
Influence of different treatment approaches
on the removal of early plaque biofilms
and the viability of SAOS2
osteoblasts grown on titanium implants.
Clin Oral Investig. 2005;9:111-7.
[12] Miller RJ. Treatment of the contaminated
implant surface using the Er,Cr:YSGG
laser. Implant Dent. 2004;13:165-70.
[13] Azzeh MM. Er,Cr:YSGG laserassisted
surgical treatment of peri-implantitis
with 1-year reentry and 18-month follow-up.
J Periodontol. 2008;79:2000-5.
[14] Huang HH, Chuang YC, Chen ZH,
Lee TL, Chen CC. Improving the
initial biocompatibility of a titanium
surface using an Er,Cr:YSGG
laser-powered hydrokinetic system.
Dent Mater. 2007;23:410-4.
[15] Natto ZS, Aladmawy M, Levi PA, Jr., Wang
HL. Comparison of the efficacy of
different types of lasers for the treatment
of peri-implantitis: a systematic
review. Int J Oral Maxillofac Implants.
2015;30:338-45.
[16] Romanos G, Crespi R, Barone A,
Covani U. Osteoblast attachment on
titanium disks after laser irradiation. Int J
Oral Maxillofac Implants. 2006;21:232-6.
[17] Park JH, Heo SJ, Koak JY, Kim SK,
Han CH, Lee JH. Effects of laser irradiation
on machined and anodized titanium disks.
Int J Oral Maxillofac Implants.
2012;27:265-72.
[18] Schwarz F, Nuesry E, Bieling K,
Herten M, Becker J. Influence of an erbium,
chromium-doped yttrium, scandium,
gallium, and garnet (Er,Cr:YSGG) laser on
the reestablishment of the
biocompatibility of contaminated
titanium implant surfaces.
J Periodontol. 2006;77:1820-7.
[19] Ercan E, Arin T, Kara L, Candirli C, Uysal
C. Effects of Er,Cr:YSGG laser irradiation
on the surface characteristics of titanium
discs: an in vitro study. Lasers Med Sci.
2014;29:875-80.
[20] Ercan E, Candirli C, Arin T, Kara L,
Uysal C. The effect of Er,Cr:YSGG
laser irradiation on titanium
discs with microtextured surface morphology.
Lasers Med Sci. 2015;30:11-5.
[21] Kreisler M, Kohnen W, Marinello C, Gotz H,
Duschner H, Jansen B, et al. Bactericidal
effect of the Er:YAG laser on dental implant
surfaces: an in vitro study. J Periodontol.
2002;73:1292-8.
[22] Wennerberg A, Albrektsson T.
Effects of titanium surface topography
on bone integration: a systematic review.
Clin Oral Implants
Res. 2009;20 Suppl 4:172-84.
[23] Shalabi MM, Gortemaker A, Van’t Hof MA,
Jansen JA, Creugers NH. Implant surface
roughness and bone healing: a systematic
review. J Dent Res. 2006;85:496-500.
[24] Shibli JA, Grassi S, de Figueiredo LC,
Feres M, Marcantonio E, Jr., Iezzi G, et
al. Influence of implant surface
topography on early osseointegration:
a histological study in human jaws.
J Biomed Mater Res B Appl Biomater.
2007;80:377-85.
[25] Sul YT. The significance of the surface
properties of oxidized titanium to the
bone response: special emphasis
on potential biochemical bonding
of oxidized titanium implant. Biomaterials.
2003;24:3893-907.
[26] Ayobian-Markazi N, Karimi M,
Safar-Hajhosseini A. Effects of Er:
YAG laser irradiation on wettability,
surface roughness, and biocompatibility
of SLA titanium surfaces: an
in vitro study. Lasers Med Sci. 2015;30:561-6.
Uysal C, Ercan E, Kara L, Arın T. ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION. Aydin Dental Journal. 2017;3(1):1-10.