BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 3 Sayı: 1, 1 - 10, 01.04.2017

Öz

Amaç: Bu çalışmanın amacı; enfekte implant yüzeyini
en uygun şekilde detoksifiye edecek ve aynı zamanda
yüzey biyouyumluluğunu koruyarak, iyileşme sürecinde
osteoblastların yeniden osseointegrasyonunu kolaylaştıracak
Er,Cr:YSGG lazer uygulama protokollerini ortaya koymaktır.
Bu amaçla lazer ile ilgili dört farklı değişken (güç-W, frekansHz,
mesafe-mm ve süre-sn.) üç farklı düzeyde incelendi.
Materyal ve Metot: S.aureus ile enfecte edilen Grade
5 titanium diskler Erbium Chromium-doped YttriumScandium-Gallium-Garnet
(Er,Cr:YSGG) lazer ile farklı
protokollerde detoksifiye edildi. Lazer uygulamasından
sonra, titanyum disklerin yüzey morfolojileri, yüzey
pürüzlülükleri, 24 saat ve 48 saat sonundaki osteoblast hücre
proliferasyonları (SaOs-2 hücre kültürü) ve osteoblast hücre
morfolojileri incelendi.
Bulgular: Çalışma sonucunda; titanyum disk yüzeyinde
en fazla morfolojik değişikliğe neden olan protokolün güç
yoğunluğunun (W/cm2) en fazla olduğu test 8 grubu (3 W- 25
Hz-2 mm-45 sn) olduğu görüldü. Bu protokolde yüzeydeki
ergime ve düzleşmenin en fazla, yüzey pürüzlülük değerinin
(Ra) ise en düşük olduğu belirlendi. Hücresel proliferasyon
değerleri incelendiğinde, 48 saat sonundaki proliferasyon
değerlerine göre test 1 ve test 7 gruplarındaki proliferasyon
değerlerinin kontrol grubuna göre istatistiksel olarak anlamlı
derecede arttığı gösterildi. Ayrıca, bu iki test grubunun (test
1 ve test 7) Ra değerleri incelendiğinde, kontrol grubuna
oldukça benzer Ra değerlerine sahip oldukları belirlendi.
Sonuç: Sonuçta, yüzey morfolojisinin değişiminde en etkili
parametrenin güç yoğunluğu olduğu bununda doğrudan
uygulama mesafesi ile ilgili olduğu görüldü. Ayrıca yüzey
pürüzlülüğünü neredeyse değiştirmeden, ilk haline yakın
olacak şekilde koruyarak, yüzey biyouyumluluğunu arttıran
uygulama koşullarının reosseointegrayon sürecinde hücresel
proliferasyona olumlu katkı sağladığı görüldü

Kaynakça

  • [1] Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 2011;38 Suppl 11:203-13.
  • [2] Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 2008;19:242-8.
  • [3] Okayasu K, Wang HL. Decision tree for the management of periimplant diseases. Implant Dent. 2011;20:256-61.
  • [4] Persson LG, Mouhyi J, Berglundh T, Sennerby L, Lindhe J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res. 2004;6:230-8.
  • [5] Renvert S, Lindahl C, Roos Jansaker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38:65-73.
  • [6] Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H. Lasers use in dental implantology. Implant Dent. 2013;22:282-8.
  • [7] Javed F, Hussain HA, Romanos GE. Re-stability of dental implants following treatment of peri-implantitis. Interv Med Appl Sci. 2013;5:116-21.
  • [8] Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J. Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res. 2003;14:784-92.
  • [9] Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2000. 2004;36:59-97.
  • [10] Asghar A, Abdul Raman AA, Daud WM. A comparison of central composite design and Taguchi method for optimizing Fenton process. Scientific Worl Journal. 2014;2014:869120.
  • [11] Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9:111-7.
  • [12] Miller RJ. Treatment of the contaminated implant surface using the Er,Cr:YSGG laser. Implant Dent. 2004;13:165-70.
  • [13] Azzeh MM. Er,Cr:YSGG laserassisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol. 2008;79:2000-5.
  • [14] Huang HH, Chuang YC, Chen ZH, Lee TL, Chen CC. Improving the initial biocompatibility of a titanium surface using an Er,Cr:YSGG laser-powered hydrokinetic system. Dent Mater. 2007;23:410-4.
  • [15] Natto ZS, Aladmawy M, Levi PA, Jr., Wang HL. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants. 2015;30:338-45.
  • [16] Romanos G, Crespi R, Barone A, Covani U. Osteoblast attachment on titanium disks after laser irradiation. Int J Oral Maxillofac Implants. 2006;21:232-6.
  • [17] Park JH, Heo SJ, Koak JY, Kim SK, Han CH, Lee JH. Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants. 2012;27:265-72.
  • [18] Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol. 2006;77:1820-7.
  • [19] Ercan E, Arin T, Kara L, Candirli C, Uysal C. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study. Lasers Med Sci. 2014;29:875-80.
  • [20] Ercan E, Candirli C, Arin T, Kara L, Uysal C. The effect of Er,Cr:YSGG laser irradiation on titanium discs with microtextured surface morphology. Lasers Med Sci. 2015;30:11-5.
  • [21] Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, et al. Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol. 2002;73:1292-8.
  • [22] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20 Suppl 4:172-84.
  • [23] Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496-500.
  • [24] Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E, Jr., Iezzi G, et al. Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater. 2007;80:377-85.
  • [25] Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893-907.
  • [26] Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015;30:561-6.

ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION

Yıl 2017, Cilt: 3 Sayı: 1, 1 - 10, 01.04.2017

Öz

Purpose: The aim of the current study was to establish
protocols for Erbium Chromium-doped Yttrium-ScandiumGallium-Garnet
(Er,Cr:YSGG) laser application for
detoxification of implant surface, preservation of surface
biocompatibility and enhancement of osseointegration.
In this purpose, four different variables including power
(W), frequency (Hz), distance (mm) and duration (sn) were
investigated at 3 different levels.
Material and Methods: Grade 5 titanium discs infected by
S.aureus were detoxified with Er, Cr: YSGG laser according
to various protocols. After laser application, surface
morphology and surface roughness of titanium discs as well
as cellular morphology and proliferation of osteoblasts-like
cells at the end of 24 and 48 hours (SaOs-2 cell culture) were
examined.
Results: The most remarkable changes on the surface
of titanium discs were observed in group Test 8 (3 W-25
Hz-2 mm-45 sn) which was exposed to the highest power
density (W/cm2).. In this protocol, melting and flattening
on the surface was observed most prominently and surface
roughness (Ra) was lowest. Proliferation indicators in groups
Test 1 and Test 7 were found to be statistically significantly
increased compared to the control group at the end of 48
hours. Furthermore, Ra values of these 2 groups (Test 1 and
Test 7) were similar to that of control group.
Discussion: To conclude, our results have shown that power
intensity, which is linked with distance, was the leading
parameter for alteration of surface morphology. We suggest
that cellular proliferation during reosseointegration is
facilitated by conditions that maintain surface roughness in
its initial form and amplify surface biocompatibility.

Kaynakça

  • [1] Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 2011;38 Suppl 11:203-13.
  • [2] Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 2008;19:242-8.
  • [3] Okayasu K, Wang HL. Decision tree for the management of periimplant diseases. Implant Dent. 2011;20:256-61.
  • [4] Persson LG, Mouhyi J, Berglundh T, Sennerby L, Lindhe J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res. 2004;6:230-8.
  • [5] Renvert S, Lindahl C, Roos Jansaker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38:65-73.
  • [6] Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H. Lasers use in dental implantology. Implant Dent. 2013;22:282-8.
  • [7] Javed F, Hussain HA, Romanos GE. Re-stability of dental implants following treatment of peri-implantitis. Interv Med Appl Sci. 2013;5:116-21.
  • [8] Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J. Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res. 2003;14:784-92.
  • [9] Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2000. 2004;36:59-97.
  • [10] Asghar A, Abdul Raman AA, Daud WM. A comparison of central composite design and Taguchi method for optimizing Fenton process. Scientific Worl Journal. 2014;2014:869120.
  • [11] Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9:111-7.
  • [12] Miller RJ. Treatment of the contaminated implant surface using the Er,Cr:YSGG laser. Implant Dent. 2004;13:165-70.
  • [13] Azzeh MM. Er,Cr:YSGG laserassisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol. 2008;79:2000-5.
  • [14] Huang HH, Chuang YC, Chen ZH, Lee TL, Chen CC. Improving the initial biocompatibility of a titanium surface using an Er,Cr:YSGG laser-powered hydrokinetic system. Dent Mater. 2007;23:410-4.
  • [15] Natto ZS, Aladmawy M, Levi PA, Jr., Wang HL. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants. 2015;30:338-45.
  • [16] Romanos G, Crespi R, Barone A, Covani U. Osteoblast attachment on titanium disks after laser irradiation. Int J Oral Maxillofac Implants. 2006;21:232-6.
  • [17] Park JH, Heo SJ, Koak JY, Kim SK, Han CH, Lee JH. Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants. 2012;27:265-72.
  • [18] Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol. 2006;77:1820-7.
  • [19] Ercan E, Arin T, Kara L, Candirli C, Uysal C. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study. Lasers Med Sci. 2014;29:875-80.
  • [20] Ercan E, Candirli C, Arin T, Kara L, Uysal C. The effect of Er,Cr:YSGG laser irradiation on titanium discs with microtextured surface morphology. Lasers Med Sci. 2015;30:11-5.
  • [21] Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, et al. Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol. 2002;73:1292-8.
  • [22] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20 Suppl 4:172-84.
  • [23] Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496-500.
  • [24] Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E, Jr., Iezzi G, et al. Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater. 2007;80:377-85.
  • [25] Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893-907.
  • [26] Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015;30:561-6.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA75KZ35UE
Bölüm Araştırma Makalesi
Yazarlar

Cihan Uysal Bu kişi benim

Esra Ercan Bu kişi benim

Levent Kara

Tuna Arın Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2017
Gönderilme Tarihi 1 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 1

Kaynak Göster

Vancouver Uysal C, Ercan E, Kara L, Arın T. ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION. Aydin Dental Journal. 2017;3(1):1-10.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)