BibTex RIS Kaynak Göster

Novel approaches for Caries Prevention

Yıl 2012, Cilt: 6 Sayı: 3, 1284 - 1292, 01.10.2012

Öz

Dental caries is one of the most common preventable childhood diseases; people are susceptible to this ailment throughout their lifetime. The definition of dental caries is the localized destruction of susceptible dental hard tissues by acidic by-products from bacterial fermentation of dietary carbohydrates. The most important effect on caries prevention, enhancement of remineralization, only can occur in the presence of calcium and phosphate ions. This review focuses on the recent development of various novel technologies for the prevention and treatment of dental caries. Recent advances in anti-plaque agents, including chemoprophylactic agents, antimicrobial peptides, probiotics/replacement therapy and sugar substitutes, and remineralization agents including fluorides, casein phosphopeptides and bioactive glasses are analyzed

Kaynakça

  • Fejerskov O., Kidd E. Dental Caries: The Disease and its Clinical Management. 2nd ed., Oxford: Blackwell Munksgaard, 2008.
  • Roberson TM., Heymann HO., Swift EJ. Sturdevant’s Art and Science of Operative Dentistry. 5th ed., St. Louis: Mosby Elsevier, Missouri, 2005.
  • Featherstone JD. Dental caries: A dynamic disease process. Aust. Dent. J. 53: 286-291, 2008.
  • ten Cate JM., Featherstone JD. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit. Rev. Oral Biol. Med. 2: 283- 296, 1991.
  • Chen F., Wang D. Novel technologies for the prevention and treatment of dental caries: A patent survey. Expert. Opin. Ther. Pat. 20: 681- 694, 2010.
  • Wolf HF., Rateitschak KH. Color Atlas of Dental Medicine: Periodontology. 3rd ed., New York: Thieme New York, 2005.
  • Newmann MG., Takei HH., Carranza FA. Carranza’s Clinical Periodontology. 9th ed., St. Louis: W.B. Saunders Co., 2001.
  • Tschoppe P., Zandim DL., Martus P., Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 39: 430-437, 2011.
  • Guggenheim B., Giertsen E., Schüpbach P., Shapiro S. Validation of an in vitro biofilm model of supragingival plaque. J. Dent. Res. 80: 363- 370, 2001.
  • Shapiro S., Giertsen E., Guggenheim B. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res. 36: 93- 100, 2002.
  • Balakrishnan M., Simmonds RS., Tagg JR. Dental caries is a preventable infectious disease. Aust. Dent. J. 45: 235-245, 2000.
  • Furia TE., Schenkel AG. A new, broad spectrum bacteriostat. Soap Chem. Specialties 44: 116- 122, 1968.
  • Stephen KW., Saxton CA., Jones CL., Ritchie JA., Morrison T. Control of gingivitis and calculus by a dentifrice containing a zinc salt and triclosan. J. Periodontol. 61: 674-679, 1990. Svatun B., Sadxton CA., Huntington E., Cummins D. The effects of three silica dentifrices containing Triclosan on supragingival plaque and calculus formation and on gingivitis. Int. Dent. J. 43: 441- 452, 1993.
  • Raghavan SL., Schuessel K., Davis A., Hadgraft J. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int. J. Pharm. 261: 153-158, 2003.
  • Nabi N., Gaffar A. Antibacterial antiplaque oral composition. US4894220, 1990.
  • Gaffar A., Afflitto J., Nabi N. Chemical agents for the control of plaque and plaque microflora: An overview. Eur. J. Oral Sci. 105: 502-507, 1997.
  • Gaffar A., Nabi N., Kashuba B., Williams M., Herles S., Olsen S., Afflitto J. Antiplaque effects of dentifrices containing triclosan/copolymer/ NaF system versus triclosan dentifrices without the copolymer. Am. J. Dent. 3 Spec No: S7-14, 1990. Gaffar A., Afflitto J., Nabi N., Herles S., Kruger I., Olsen S. Recent advances in plaque, gingivitis, tartar and caries prevention technology. Int. Dent. J. 44: 63-70, 1994.
  • Allaker RP., Douglas CW. Novel anti-microbial therapies for dental plaque-related diseases. Int. J. Antimicrob. Agents 33: 8-13, 2009. Darout IA., Albandar JM., Skaug N., Ali RW. Salivary microbiota levels in relation to periodontal status, experience of caries and miswak use in Sudanese adults. J. Clin. Periodontol. 29: 411- 420, 2002.
  • Takarada K., Kimizuka R., Takahashi N., Honma K., Okuda K., Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol. Immunol. 19: 61-64, 2004.
  • Hamilton-Miller JM. Anti-cariogenic properties of tea (Camellia sinensis). J. Med. Microbiol. 50: 299-302, 2001.
  • Hirasawa M., Takada K., Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 40: 265-270, 2006.
  • Al-Hebshi NN., Nielsen O., Skaug N. In vitro effects of crude khat extracts on the growth, colonization, and glucosyltransferases of Streptococcus mutans. Acta Odontol. Scand. 63: 136-142, 2005.
  • Rahim ZH., Khan HB. Comparative studies on the effect of crude aqueous (CA) and solvent (CM) extracts of clove on the cariogenic properties of Streptococcus mutans. J. Oral Sci. 48: 117-123, 2006.
  • Koo H., Nino de Guzman P., Schobel BD., Vacca Smith AV., Bowen WH. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res. 40: 20-27, 2006.
  • Yu HH., Lee DH., Seo SJ., You YO. Anticariogenic properties of the extract of Cyperus rotundus. Am. J. Chin. Med. 35: 497-505, 2007.
  • Brighenti FL., Luppens SB., Delbem AC., Deng DM., Hoogenkamp MA., Gaetti-Jardim E. Jr., Dekker HL., Crielaard W., ten Cate JM. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production. Caries Res. 42: 148-154, 2008.
  • Mezine I., Zhang H., Petteruti M., Opet M., Finley J. Oral care compositions derived from the Labiatae family. US7517541, 2009.
  • Ofek I., Weiss E., Kashman Y., Goldhar J., Sharon N. Anti-microbial-adhesion fraction derived from vaccinium. US6843993, 2005.
  • Cheng L., ten Cate JM. Effect of Galla chinensis on the in vitro remineralization of advanced enamel lesions. Int. J. Oral Sci. 2: 15-20, 2010.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 415: 389-395, 2002.
  • Marr AK., Gooderham WJ., Hancock RE. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 6: 468-472, 2006.
  • Eckert R., He J., Yarbrough DK., Qi F., Anderson MH., Shi W. Targeted killing of Streptococcus mutans by a pheromone-guided ‘smart’ antimicrobial peptide. Antimicrob. Agents Chemother. 50: 3651-3657, 2006.
  • Caglar E., Kargul B., Tanboga I. Bacteriotherapy and probiotics’ role on oral health. Oral Dis. 11: 131-137, 2005.
  • Sullivan A., Nord CE. Probiotics in human infections. J. Antimicrob. Chemother. 50: 625- 627, 2002.
  • Silva M., Jacobus NV., Deneke C., Gorbach SL. Antimicrobial substance from a human Lactobacillus Chemother. 31: 1231-1233, 1987. Antimicrob. Agents
  • Nase L., Hatakka K., Savilahti E., Saxelin M., Pönka A., Poussa T., Korpela R., Meurman JH. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 35: 412-420, 2001.
  • Wei H., Loimaranta V., Tenovuo J., Rokka S., Syvaoja EL., Korhonen H., Joutsjoki V., Marnila P. Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiol. Immunol. 17: 9-15, 2002.
  • Laleman I., Detailleur V., Slot DE., Slomka V., Quirynen M., Teughels W. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin. Oral Investig. 18: 1539-1552, 2014.
  • Matsukubo T., Takazoe I. Sucrose substitutes and their role in caries prevention. Int. Dent. J. 56: 119-130, 2006.
  • Edwardsson S., Birkhed D., Mejare B. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli. Acta Odontol. Scand. 35: 257-263, 1977.
  • Waler SM., Rolla G. Effect of xylitol on dental plaque in vivo during carbohydrate challenge. Scand. J. Dent. Res. 91: 256-259, 1983.
  • Vadeboncoeur C., Trahan L., Mouton C., Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 62: 882-884, 1983.
  • Assev S., Rölla G. Further studies on the growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol. Microbiol. Immunol. Scand. B. 94: 97-102, 1986.
  • Ly KA., Milgrom P., Roberts MC., Yamaguchi DK., Rothen M., Mueller G. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: A randomized controlled trial [ISRCTN43479664]. BMC Oral Health. 6: 6, 2006.
  • Milgrom P., Ly KA., Roberts MC., Rothen M., Mueller G., Yamaguchi DK. Mutans streptococci dose response toxylitol chewing gum. J. Dent. Res. 85: 177-181, 2006.
  • Soderling E., Isokangas P., Pienihakkinen K., Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J. Dent. Res. 79: 882-887, 2000.
  • Thorild I., Lindau B., Twetman S. Effect of maternal use of chewing gums containing xylitol, chlorhexidine or fluoride on mutans streptococci colonization in the mothers’ infant children. Oral Health Prev. Dent. 1: 53-57, 2003.
  • Deshpande A., Jadad AR. The impact of polyol- containing chewing gums on dental caries: a systematic review of original randomized controlled trials and observational studies. J. Am. Dent. Assoc. 139: 1602-1614, 2008.
  • Featherstone JD. Remineralization, the natural caries repair process--the need for new approaches. Adv. Dent. Res. 21: 4-7, 2009.
  • Pessan JP., Al-Ibrahim NS., Buzalaf MA., Toumba KJ. Slow-release fluoride devices: A literature review. J. Appl. Oral Sci. 16: 238-246, 2008.
  • Algar B., Toumba J., Curzon M. Method of treating a patient’s teeth using fluoride releasing glass composition. US7323160, 2008.
  • Jessop N., McLean BS., Lewis P., Bills D., Fischer DE. Dental brackets for retaining a medicament- releasing pellet on a tooth and kits including such brackets. US7097449, 2006.
  • Jessop NT., McLean BS., Fischer DE. Fluoride- releasing pellet kit. US6997706, 2006.
  • Tezel H., Ergücü Z., Onal B. Effects of topical fluoride agents on artificial enamel lesion formation in vitro. Quintessence Int. 33: 347- 352, 2002. Xu HH., Moreau JL., Sun L., Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 29: 4261-4267, 2008.
  • Xu X., Burgess JO., Ding X., Ling L. Fluoride- releasing compositions. US6703518, 2004.
  • Schüpbach P., Neeser JR., Golliard M., Rouvet M., Guggenheim B. Incorporation of caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J. Dent. Res. 75: 1779-1788, 1996. and
  • Guggenheim B., Schmid R., Aeschlimann JM., Berrocal R., Nceser JR. Powdered milk micellar casein prevents oral colonization by Streptococcus sobrinus and dental caries in rats: A basis for the caries-protective effect of dairy products. Caries Res. 33: 446-454, 1999.
  • Reynolds EC. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J. Dent. Res. 66: 1120-1127, 1987. Reynolds E. Calcium phosphopeptide complexes. US7312193, 2007.
  • Bailey DL., Adams GG., Tsao CE., Hyslop A., Escobar K., Manton DJ., Reynolds EC., Morgan MV. Regression of post-orthodontic lesions by a remineralizing cream. J. Dent. Res. 88: 1148- 1153, 2009. Cochrane NJ., Cai F., Huq NL., Burrow MF., Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 89: 1187-1197, 2010.
  • Zero DT. Recaldent--evidence for clinical activity. Adv. Dent. Res. 21: 30-34, 2009.
  • Wefel JS. NovaMin: Likely clinical success. Adv. Dent. Res. 21: 40-43, 2009.

Diş Çürüklerinin Önlenmesinde Güncel Yaklaşımlar

Yıl 2012, Cilt: 6 Sayı: 3, 1284 - 1292, 01.10.2012

Öz

Diş çürüğü, bireyleri hayatları boyunca etkileyen, sık görülen ve önlenebilir bir çocukluk çağı hastalığıdır. Diş çürüğü bakterilerin fermente ettiği karbonhidratların asidik yan ürünlerinin diş sert dokularında yarattığı lokalize yıkım olarak tanımlanabilir. Diş çürüğünün önlenmesinde en önemli etki kalsiyum ve fosfat iyonlarının varlığında gerçekleşen remineralizasyonla sağlanmaktadır. Bu derlemede diş çürüğünün önlenmesi ve tedavisinde yakın zamanda olan gelişmeler yer almaktadır. Bu kapsamda, kemoprofilaktik ajanlar, antimikrobiyal peptitler, probiyotikler ve yer değiştirme tedavisi, şeker değişkenleri, florür, kazein fosfopeptit ve biyoaktif cam içeren remineralize edici ajanlardaki gelişmeler değerlendirilmektedir

Kaynakça

  • Fejerskov O., Kidd E. Dental Caries: The Disease and its Clinical Management. 2nd ed., Oxford: Blackwell Munksgaard, 2008.
  • Roberson TM., Heymann HO., Swift EJ. Sturdevant’s Art and Science of Operative Dentistry. 5th ed., St. Louis: Mosby Elsevier, Missouri, 2005.
  • Featherstone JD. Dental caries: A dynamic disease process. Aust. Dent. J. 53: 286-291, 2008.
  • ten Cate JM., Featherstone JD. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit. Rev. Oral Biol. Med. 2: 283- 296, 1991.
  • Chen F., Wang D. Novel technologies for the prevention and treatment of dental caries: A patent survey. Expert. Opin. Ther. Pat. 20: 681- 694, 2010.
  • Wolf HF., Rateitschak KH. Color Atlas of Dental Medicine: Periodontology. 3rd ed., New York: Thieme New York, 2005.
  • Newmann MG., Takei HH., Carranza FA. Carranza’s Clinical Periodontology. 9th ed., St. Louis: W.B. Saunders Co., 2001.
  • Tschoppe P., Zandim DL., Martus P., Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 39: 430-437, 2011.
  • Guggenheim B., Giertsen E., Schüpbach P., Shapiro S. Validation of an in vitro biofilm model of supragingival plaque. J. Dent. Res. 80: 363- 370, 2001.
  • Shapiro S., Giertsen E., Guggenheim B. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res. 36: 93- 100, 2002.
  • Balakrishnan M., Simmonds RS., Tagg JR. Dental caries is a preventable infectious disease. Aust. Dent. J. 45: 235-245, 2000.
  • Furia TE., Schenkel AG. A new, broad spectrum bacteriostat. Soap Chem. Specialties 44: 116- 122, 1968.
  • Stephen KW., Saxton CA., Jones CL., Ritchie JA., Morrison T. Control of gingivitis and calculus by a dentifrice containing a zinc salt and triclosan. J. Periodontol. 61: 674-679, 1990. Svatun B., Sadxton CA., Huntington E., Cummins D. The effects of three silica dentifrices containing Triclosan on supragingival plaque and calculus formation and on gingivitis. Int. Dent. J. 43: 441- 452, 1993.
  • Raghavan SL., Schuessel K., Davis A., Hadgraft J. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int. J. Pharm. 261: 153-158, 2003.
  • Nabi N., Gaffar A. Antibacterial antiplaque oral composition. US4894220, 1990.
  • Gaffar A., Afflitto J., Nabi N. Chemical agents for the control of plaque and plaque microflora: An overview. Eur. J. Oral Sci. 105: 502-507, 1997.
  • Gaffar A., Nabi N., Kashuba B., Williams M., Herles S., Olsen S., Afflitto J. Antiplaque effects of dentifrices containing triclosan/copolymer/ NaF system versus triclosan dentifrices without the copolymer. Am. J. Dent. 3 Spec No: S7-14, 1990. Gaffar A., Afflitto J., Nabi N., Herles S., Kruger I., Olsen S. Recent advances in plaque, gingivitis, tartar and caries prevention technology. Int. Dent. J. 44: 63-70, 1994.
  • Allaker RP., Douglas CW. Novel anti-microbial therapies for dental plaque-related diseases. Int. J. Antimicrob. Agents 33: 8-13, 2009. Darout IA., Albandar JM., Skaug N., Ali RW. Salivary microbiota levels in relation to periodontal status, experience of caries and miswak use in Sudanese adults. J. Clin. Periodontol. 29: 411- 420, 2002.
  • Takarada K., Kimizuka R., Takahashi N., Honma K., Okuda K., Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol. Immunol. 19: 61-64, 2004.
  • Hamilton-Miller JM. Anti-cariogenic properties of tea (Camellia sinensis). J. Med. Microbiol. 50: 299-302, 2001.
  • Hirasawa M., Takada K., Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 40: 265-270, 2006.
  • Al-Hebshi NN., Nielsen O., Skaug N. In vitro effects of crude khat extracts on the growth, colonization, and glucosyltransferases of Streptococcus mutans. Acta Odontol. Scand. 63: 136-142, 2005.
  • Rahim ZH., Khan HB. Comparative studies on the effect of crude aqueous (CA) and solvent (CM) extracts of clove on the cariogenic properties of Streptococcus mutans. J. Oral Sci. 48: 117-123, 2006.
  • Koo H., Nino de Guzman P., Schobel BD., Vacca Smith AV., Bowen WH. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res. 40: 20-27, 2006.
  • Yu HH., Lee DH., Seo SJ., You YO. Anticariogenic properties of the extract of Cyperus rotundus. Am. J. Chin. Med. 35: 497-505, 2007.
  • Brighenti FL., Luppens SB., Delbem AC., Deng DM., Hoogenkamp MA., Gaetti-Jardim E. Jr., Dekker HL., Crielaard W., ten Cate JM. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production. Caries Res. 42: 148-154, 2008.
  • Mezine I., Zhang H., Petteruti M., Opet M., Finley J. Oral care compositions derived from the Labiatae family. US7517541, 2009.
  • Ofek I., Weiss E., Kashman Y., Goldhar J., Sharon N. Anti-microbial-adhesion fraction derived from vaccinium. US6843993, 2005.
  • Cheng L., ten Cate JM. Effect of Galla chinensis on the in vitro remineralization of advanced enamel lesions. Int. J. Oral Sci. 2: 15-20, 2010.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 415: 389-395, 2002.
  • Marr AK., Gooderham WJ., Hancock RE. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 6: 468-472, 2006.
  • Eckert R., He J., Yarbrough DK., Qi F., Anderson MH., Shi W. Targeted killing of Streptococcus mutans by a pheromone-guided ‘smart’ antimicrobial peptide. Antimicrob. Agents Chemother. 50: 3651-3657, 2006.
  • Caglar E., Kargul B., Tanboga I. Bacteriotherapy and probiotics’ role on oral health. Oral Dis. 11: 131-137, 2005.
  • Sullivan A., Nord CE. Probiotics in human infections. J. Antimicrob. Chemother. 50: 625- 627, 2002.
  • Silva M., Jacobus NV., Deneke C., Gorbach SL. Antimicrobial substance from a human Lactobacillus Chemother. 31: 1231-1233, 1987. Antimicrob. Agents
  • Nase L., Hatakka K., Savilahti E., Saxelin M., Pönka A., Poussa T., Korpela R., Meurman JH. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 35: 412-420, 2001.
  • Wei H., Loimaranta V., Tenovuo J., Rokka S., Syvaoja EL., Korhonen H., Joutsjoki V., Marnila P. Stability and activity of specific antibodies against Streptococcus mutans and Streptococcus sobrinus in bovine milk fermented with Lactobacillus rhamnosus strain GG or treated at ultra-high temperature. Oral Microbiol. Immunol. 17: 9-15, 2002.
  • Laleman I., Detailleur V., Slot DE., Slomka V., Quirynen M., Teughels W. Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin. Oral Investig. 18: 1539-1552, 2014.
  • Matsukubo T., Takazoe I. Sucrose substitutes and their role in caries prevention. Int. Dent. J. 56: 119-130, 2006.
  • Edwardsson S., Birkhed D., Mejare B. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli. Acta Odontol. Scand. 35: 257-263, 1977.
  • Waler SM., Rolla G. Effect of xylitol on dental plaque in vivo during carbohydrate challenge. Scand. J. Dent. Res. 91: 256-259, 1983.
  • Vadeboncoeur C., Trahan L., Mouton C., Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 62: 882-884, 1983.
  • Assev S., Rölla G. Further studies on the growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol. Microbiol. Immunol. Scand. B. 94: 97-102, 1986.
  • Ly KA., Milgrom P., Roberts MC., Yamaguchi DK., Rothen M., Mueller G. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: A randomized controlled trial [ISRCTN43479664]. BMC Oral Health. 6: 6, 2006.
  • Milgrom P., Ly KA., Roberts MC., Rothen M., Mueller G., Yamaguchi DK. Mutans streptococci dose response toxylitol chewing gum. J. Dent. Res. 85: 177-181, 2006.
  • Soderling E., Isokangas P., Pienihakkinen K., Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J. Dent. Res. 79: 882-887, 2000.
  • Thorild I., Lindau B., Twetman S. Effect of maternal use of chewing gums containing xylitol, chlorhexidine or fluoride on mutans streptococci colonization in the mothers’ infant children. Oral Health Prev. Dent. 1: 53-57, 2003.
  • Deshpande A., Jadad AR. The impact of polyol- containing chewing gums on dental caries: a systematic review of original randomized controlled trials and observational studies. J. Am. Dent. Assoc. 139: 1602-1614, 2008.
  • Featherstone JD. Remineralization, the natural caries repair process--the need for new approaches. Adv. Dent. Res. 21: 4-7, 2009.
  • Pessan JP., Al-Ibrahim NS., Buzalaf MA., Toumba KJ. Slow-release fluoride devices: A literature review. J. Appl. Oral Sci. 16: 238-246, 2008.
  • Algar B., Toumba J., Curzon M. Method of treating a patient’s teeth using fluoride releasing glass composition. US7323160, 2008.
  • Jessop N., McLean BS., Lewis P., Bills D., Fischer DE. Dental brackets for retaining a medicament- releasing pellet on a tooth and kits including such brackets. US7097449, 2006.
  • Jessop NT., McLean BS., Fischer DE. Fluoride- releasing pellet kit. US6997706, 2006.
  • Tezel H., Ergücü Z., Onal B. Effects of topical fluoride agents on artificial enamel lesion formation in vitro. Quintessence Int. 33: 347- 352, 2002. Xu HH., Moreau JL., Sun L., Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 29: 4261-4267, 2008.
  • Xu X., Burgess JO., Ding X., Ling L. Fluoride- releasing compositions. US6703518, 2004.
  • Schüpbach P., Neeser JR., Golliard M., Rouvet M., Guggenheim B. Incorporation of caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J. Dent. Res. 75: 1779-1788, 1996. and
  • Guggenheim B., Schmid R., Aeschlimann JM., Berrocal R., Nceser JR. Powdered milk micellar casein prevents oral colonization by Streptococcus sobrinus and dental caries in rats: A basis for the caries-protective effect of dairy products. Caries Res. 33: 446-454, 1999.
  • Reynolds EC. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J. Dent. Res. 66: 1120-1127, 1987. Reynolds E. Calcium phosphopeptide complexes. US7312193, 2007.
  • Bailey DL., Adams GG., Tsao CE., Hyslop A., Escobar K., Manton DJ., Reynolds EC., Morgan MV. Regression of post-orthodontic lesions by a remineralizing cream. J. Dent. Res. 88: 1148- 1153, 2009. Cochrane NJ., Cai F., Huq NL., Burrow MF., Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 89: 1187-1197, 2010.
  • Zero DT. Recaldent--evidence for clinical activity. Adv. Dent. Res. 21: 30-34, 2009.
  • Wefel JS. NovaMin: Likely clinical success. Adv. Dent. Res. 21: 40-43, 2009.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Çiğdem Çelik Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 6 Sayı: 3

Kaynak Göster

Vancouver Çelik Ç. Diş Çürüklerinin Önlenmesinde Güncel Yaklaşımlar. ADO Klinik Bilimler Dergisi. 2012;6(3):1284-92.