Research Article
BibTex RIS Cite

Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri

Year 2018, Volume: 15 Issue: 1, 25 - 32, 30.06.2018
https://doi.org/10.25308/aduziraat.336073

Abstract

Zeytin karasuyu,
yüksek kirlilik yükü ve içerdi
ği polifenollerden
dolay
ı fitotoksik etkilere sahip fakat bununla beraber
organik bile
şikler ve bitki besin
elementleri y
önünden de zengin bir atık su özelliğindedir. Bu nedenle belli düzeyde bir arıtımdan geçtikten
sonra toprak
ıslah maddesi olarak
kullan
ılabilme potansiyeli bulunmaktadır. Bu çalışmada; zeytinyağı üretimi sırasında ortaya çıkan
ham karasu ve iki farkl
ı yöntem (ekonomik ön arıtma ve ileri arıtma tekniği) ile arıtılmış karasu kumlu tın bünyeli bir toprağa 50, 100 ve 150 m3 ha-1
dozlar
ında uygulanmış
ve topra
ğın C ve N-dinamiği ile bazı kimyasal özelliklerinde
meydana getirdi
ği değişimler incelenmiştir.  Deneme laboratuvar koşullarında 90 günlük bir
inkübasyon denemesi olarak yürütülmüştür. Gerek arıtılmış ve gerekse
arıtılmamış zeytin karasu uygulamaları topra
ğın toplam organik-C
(TOC), toplam N (TON),
çözünebilir-C (ÇÖZ-C),
mikrobiyal biyok
ütle-C ve-N (MB-C ve MB-N),
alınabilir P ve K miktarlarını artırmış fakat N-immobilizasyonundan dolayı
inorganik-N (
İNOR-N) havuzunu küçültmüştür. En yüksek MB-C/TOC, ÇÖZ-C/TOC
ve MB-N/TON oranlar
ı karasu uygulamalarının ilk dozlarında, en yüksek
İNOR-N/TON oranları
ise, kontrol ve en yüksek ham karasu uygulamalarında saptanmıştır. Bu sonuçlar
karasuyun 50 ve 100 m
3 ha-1 uygulamalarında topraktaki
mikrobiyal biyokütlenin arttı
ğını fakat 150 m3 ha-1 karasu
uygulamas
ında topraktaki C ve
N-dinami
ğinin olumsuz etkilendiğini ortaya çıkarmıştır.
Fenol ve organik C yükünün azaltıldı
ğı arıtılmış karasuların100
m
3 ha-1
’ı geçmeyecek dozlardaki uygulamalarının bu atığın değerlendirilmesinde
iyi bir geri d
önüşüm stratejisi olabileceği düşünülmektedir.

References

  • Anonim (1978) Torf für Gartenbau und Landwirtschaft (DIN 11542).
  • Anonim (2015) Türkiye İstatistik Yıllığı. Türkiye İstatistik Kurumu Matbaası, Ankara.
  • Belaqziz M, El-Abbassi A, Lakhal EK, Agrafioti E, Galanakis CM (2016) Agronomic Application of Olive Mill Wastewater: Effects on Maize Production and Soil Properties. Journal of Environmental Management 171:158-165.
  • Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J (1998) Maturity and Stability Parameters of Composts Prepared With a Wide Range of Organic Wastes. Bioresource Technology 63:91-99.
  • Black C A (1965) Methods of Soil Analysis, Part 1-2., American Society of Agronomy, Inc., Publisher. Madison Wisconsin.
  • Böhme L, Böhme F (2006) Soil Microbiological and Biochemical Properties Affected by Plant Growth and Different Long-Term Fertilization. European Journal of Soil Biology 42:1-12.
  • Bouyoucos GJ (1962) A Recalibration of the Hydrometer Method for Making Mechanical Analysis of the Soils. Agronomy Journal 4(9): 419-434.
  • Bremner, JM (1965) Total Nitrogen. In: Black CA (ed), Methods of Soil Analysis. Part-2, American Society of Agronomy Inc, Publisher Madison, Wisconsin, 1149-1178.
  • Brunetti G, Senesi N, Plaza C (2007) Effects of Amendment With Treated and Untreated Olive Oil Mill Wastewaters on Soil Properties, Soil Humic Substances and Wheat Yield. Geoderma 138:144-152.
  • Demisie W, Liu Z, Zhang M (2014) Effect of Biochar on Carbon Fractions and Enzyme Activity of Red Soil. Catena 121:214-221.
  • FAO (2016) Food and Agriculture Organization of the United Nations Statistics Division. Web: http://www.fao.org/faostat/en/#data/QD Erişim Tarihi: 27.04.2018.
  • Gargouri K, Rouina BB, Mechichi T, Kallel M (2014) Effects of Olive Mill Wastewater on Soil Nutrients Availability. International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS) 2(1):175-183.
  • Haynes RJ (2000) Labile Organic Matter as an Indicator of Organic Matter Quality in Arable and Pastoral Soils in New Zealand. Soil Biology & Biochemistry 32:211- 219.
  • Hocaoğlu SM (2015) Zeytin Sektörü Atıklarının Yönetimi Projesi. Çevre ve Şehircilik Bakanlığı, Çevre Yönetimi Genel Müdürlüğü, Nihai Rapor, 335.
  • Huang JY, Song, CC (2010) Effects of Land Use on Soil Water Soluble Organic C and Microbial Biomass C Concentration in the Sanjiang Plain in Northeast China. Acta Agriulturae Scandivanica Section B Soil Plant 60:182-188.
  • Jackson ML (1967) Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.
  • Jones DL, Willett, VB (2006) Experimental Evaluation of Methods to Quantify Dissolved Organic Nitrogen (DON) and Dissolved Organic Carbon (DOC) in Soil. Soil Biology & Biochemistry 38(5):991-999.
  • Kandeler E, Gerber H (1988) Short-term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biology and Fertility of Soils 6(1):68-72.
  • Lindsay WL, Norvell WA (1978) Development of a DTPA Soil Test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal 42(3):421-428.
  • Magdich S, Ahmed CB, Jarboui R, Rouina BB, Boukhris M, Ammar E (2013) Dose and Frequency Dependent Effects of Olive Mill Wastewater Treatment on the Chemical and Microbial Properties of Soil. Chemosphere 93(9):1896-1903.
  • Mechri B, Ben Mariem F, Baham M, Ben Elhadj S, Hammami M (2009) Change in Soil Properties and the Soil Microbiological Community Following Land Spreading of Olive Mill Wastewater Affects Olive Trees Key Physiological Parameters and the Abundance of Arbuscular Mycorrhizal Fungi. Soil Biology & Biochemistry 40:152–161.
  • Mechri B, Echbili A, Issaoui M, Braham M, Elhadj SB, Hammamia M (2007) Short-term Effects in Soil Microbial Community Following Agronomic Application of Olive Mill Wastewaters in a Field of Olive Trees. Applied Soil Ecology 36:216-223.
  • Mekki A, Dhouib A, Sayadi S (2006) Changes in Microbial and Soil Properties Following Amendment With Treated and Untreated Olive Mill Wastewater. Microbiological Research 161:93-101.
  • Moraetis D, Stamati FE, Nikolaidis NP, Kalogerakis N (2011) Olive Mill Wastewater Irrigation of Maize: Impacts on Soil and Groundwater. Agricultural Water Management 98(7):1125-1132.
  • Olsen SR, Sommers EL (1982) Phosphorus Soluble in Sodium Bicarbonate. In: Page AL, Miller RH, Keeney DR (Eds.), Methods of Soil Analysis, Chemical and Microbiological Properties, Part 2, American Society of Agronomy, Madison, 404-430.
  • Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term Effects of Olive Mill Waste Water (OMW) on Chemical and Biochemical Properties of a Semiarid Mediterranean Soil. Soil Biology & Biochemistry 38:600-610.
  • Piotrowska A, Antonietta Rao M, Scotti R, Gianfreda L (2011) Changes in Soil Chemical and Biochemical Properties Following Amendment With Crude and Dephenolized Olive Mill Waste Water (OMW). Geoderma 161:8-17.
  • Pratt PF (1965) Chemical and Microbiological Properties. In: Black CA (Ed.), Methods of Soil Analysis. Part 2 American Society of Agronomy, Inc. Pub. Agron. Series, No. 9 Madison, Wisconsin.
  • Rauterberg E, Kremkus F (1951) Bestimmung Von Gesamthumus und Alkalilöslichen Humusstoffen im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 54(3):240-249.
  • Robertson GP, Groffman, PM (2007) Nitrogen Transformations. In: Paul EA (ed.), Soil Microbiology, Ecology, and Biochemistry, Burlington, Academic Press, Elsevier, 341-387.
  • Scharpf HC, Wehrmann J (1976) Importance of Soil Mineral N Supply at the Start of the Growing Season for Assessing N Fertilizer Requirements of Winter Wheat. Landwirtschaftliche Forschung, Sonderheft 32(1):100-114.
  • Schlichting E, Blume HP (1966) Bodenkundliches Praktikum. Verlag Paul Parey, Hamburg und Berlin.
  • Sierra J, Martí E, Garau MA, Cruanas R (2007) Effects of the Agronomic Use of Olive Oil Mill Wastewater Field Experiment. Science of the Total Environment 378: 90–94.
  • Sparling G (1992) Ratio of Microbial Biomass C to Soil Organic C as a Sensitive Indicator of Changes in Soil Organic Matter. Australian Journal of Soil Research 30:195-197.
  • Tsagaraki E, Lazarides N, Petrotos KB (2007) Olive Mill Wastewater Treatment. In: Oreopoulou V, Russ W (Eds.), Utilization of By-products and Treatment of Waste in the Food Industry, LLC, NY, USA, Springer Science+Business Media, 132-157.
  • Vance ED, Brookes PC, Jenkinson DS (1987) An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biology & Biochemistry 19:703 – 707.
  • Yay ASE, Oral HV, Onay TT, Yenigün O (2012) A Study on Olive Mill Wastewater Management in Turkey: A Questionnaire and Experimental Approach. Resources, Conservation and Recycling 60:64-71.

The Effects of Treated and Untreated Oil Mill Wastewater on C and N-Dynamics of a Sandy Loam Soil

Year 2018, Volume: 15 Issue: 1, 25 - 32, 30.06.2018
https://doi.org/10.25308/aduziraat.336073

Abstract

Olive
mill wastewater (OMW) is characterized by high pollutant load and phytotoxic
levels of polyphenols, but also a high amount of organic compounds and plant
mineral nutrients. For this reason, there is a potential to be used as a
material improving soil after treated. 
In this study, OMW treated with two different treatment processes
(economic pre-treatment and advanced treatment process) and untreated OMW were
applied to a sandy loam texture soil at the rates of 0, 50, 100, 150 m
3
ha
-1 and the changes in C-and N-dynamics of soil and some chemical
properties were determined.
  The
experiment was carried out in total period of 90 days of incubation under
laboratory conditions. Amendment with untreated and treated wastewaters
increased the contents of total organic C (TOC), total N (TON),
  soluble- C (SOL-C), microbial biomass-C and N
(MB-C and MB-N)
 and available P and K,
but inorganic-N (INOR-N) pool decreased due to N-immobilization. The highest
the ratios of MB-C/TOC, SOL-C/TOC and MB-N/TON were determined at the low OMW
rates and the highest INOR-N/TON at the control and highest untreated OMW rate.
  These results showed that microbial biomass
increased at 50 and 100 m
3 ha-1 OMW rates but C-and
N-dynamics of soil negatively were affected by 150 m
3 ha-1
OMW applications. The fact that OMW that are minimized phenol and organic C
load are applied to soils at not exceeding 100 m
3 ha-1
rate may be considered to be a good strategy for recycling this waste.
 

References

  • Anonim (1978) Torf für Gartenbau und Landwirtschaft (DIN 11542).
  • Anonim (2015) Türkiye İstatistik Yıllığı. Türkiye İstatistik Kurumu Matbaası, Ankara.
  • Belaqziz M, El-Abbassi A, Lakhal EK, Agrafioti E, Galanakis CM (2016) Agronomic Application of Olive Mill Wastewater: Effects on Maize Production and Soil Properties. Journal of Environmental Management 171:158-165.
  • Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J (1998) Maturity and Stability Parameters of Composts Prepared With a Wide Range of Organic Wastes. Bioresource Technology 63:91-99.
  • Black C A (1965) Methods of Soil Analysis, Part 1-2., American Society of Agronomy, Inc., Publisher. Madison Wisconsin.
  • Böhme L, Böhme F (2006) Soil Microbiological and Biochemical Properties Affected by Plant Growth and Different Long-Term Fertilization. European Journal of Soil Biology 42:1-12.
  • Bouyoucos GJ (1962) A Recalibration of the Hydrometer Method for Making Mechanical Analysis of the Soils. Agronomy Journal 4(9): 419-434.
  • Bremner, JM (1965) Total Nitrogen. In: Black CA (ed), Methods of Soil Analysis. Part-2, American Society of Agronomy Inc, Publisher Madison, Wisconsin, 1149-1178.
  • Brunetti G, Senesi N, Plaza C (2007) Effects of Amendment With Treated and Untreated Olive Oil Mill Wastewaters on Soil Properties, Soil Humic Substances and Wheat Yield. Geoderma 138:144-152.
  • Demisie W, Liu Z, Zhang M (2014) Effect of Biochar on Carbon Fractions and Enzyme Activity of Red Soil. Catena 121:214-221.
  • FAO (2016) Food and Agriculture Organization of the United Nations Statistics Division. Web: http://www.fao.org/faostat/en/#data/QD Erişim Tarihi: 27.04.2018.
  • Gargouri K, Rouina BB, Mechichi T, Kallel M (2014) Effects of Olive Mill Wastewater on Soil Nutrients Availability. International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS) 2(1):175-183.
  • Haynes RJ (2000) Labile Organic Matter as an Indicator of Organic Matter Quality in Arable and Pastoral Soils in New Zealand. Soil Biology & Biochemistry 32:211- 219.
  • Hocaoğlu SM (2015) Zeytin Sektörü Atıklarının Yönetimi Projesi. Çevre ve Şehircilik Bakanlığı, Çevre Yönetimi Genel Müdürlüğü, Nihai Rapor, 335.
  • Huang JY, Song, CC (2010) Effects of Land Use on Soil Water Soluble Organic C and Microbial Biomass C Concentration in the Sanjiang Plain in Northeast China. Acta Agriulturae Scandivanica Section B Soil Plant 60:182-188.
  • Jackson ML (1967) Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.
  • Jones DL, Willett, VB (2006) Experimental Evaluation of Methods to Quantify Dissolved Organic Nitrogen (DON) and Dissolved Organic Carbon (DOC) in Soil. Soil Biology & Biochemistry 38(5):991-999.
  • Kandeler E, Gerber H (1988) Short-term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biology and Fertility of Soils 6(1):68-72.
  • Lindsay WL, Norvell WA (1978) Development of a DTPA Soil Test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal 42(3):421-428.
  • Magdich S, Ahmed CB, Jarboui R, Rouina BB, Boukhris M, Ammar E (2013) Dose and Frequency Dependent Effects of Olive Mill Wastewater Treatment on the Chemical and Microbial Properties of Soil. Chemosphere 93(9):1896-1903.
  • Mechri B, Ben Mariem F, Baham M, Ben Elhadj S, Hammami M (2009) Change in Soil Properties and the Soil Microbiological Community Following Land Spreading of Olive Mill Wastewater Affects Olive Trees Key Physiological Parameters and the Abundance of Arbuscular Mycorrhizal Fungi. Soil Biology & Biochemistry 40:152–161.
  • Mechri B, Echbili A, Issaoui M, Braham M, Elhadj SB, Hammamia M (2007) Short-term Effects in Soil Microbial Community Following Agronomic Application of Olive Mill Wastewaters in a Field of Olive Trees. Applied Soil Ecology 36:216-223.
  • Mekki A, Dhouib A, Sayadi S (2006) Changes in Microbial and Soil Properties Following Amendment With Treated and Untreated Olive Mill Wastewater. Microbiological Research 161:93-101.
  • Moraetis D, Stamati FE, Nikolaidis NP, Kalogerakis N (2011) Olive Mill Wastewater Irrigation of Maize: Impacts on Soil and Groundwater. Agricultural Water Management 98(7):1125-1132.
  • Olsen SR, Sommers EL (1982) Phosphorus Soluble in Sodium Bicarbonate. In: Page AL, Miller RH, Keeney DR (Eds.), Methods of Soil Analysis, Chemical and Microbiological Properties, Part 2, American Society of Agronomy, Madison, 404-430.
  • Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term Effects of Olive Mill Waste Water (OMW) on Chemical and Biochemical Properties of a Semiarid Mediterranean Soil. Soil Biology & Biochemistry 38:600-610.
  • Piotrowska A, Antonietta Rao M, Scotti R, Gianfreda L (2011) Changes in Soil Chemical and Biochemical Properties Following Amendment With Crude and Dephenolized Olive Mill Waste Water (OMW). Geoderma 161:8-17.
  • Pratt PF (1965) Chemical and Microbiological Properties. In: Black CA (Ed.), Methods of Soil Analysis. Part 2 American Society of Agronomy, Inc. Pub. Agron. Series, No. 9 Madison, Wisconsin.
  • Rauterberg E, Kremkus F (1951) Bestimmung Von Gesamthumus und Alkalilöslichen Humusstoffen im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 54(3):240-249.
  • Robertson GP, Groffman, PM (2007) Nitrogen Transformations. In: Paul EA (ed.), Soil Microbiology, Ecology, and Biochemistry, Burlington, Academic Press, Elsevier, 341-387.
  • Scharpf HC, Wehrmann J (1976) Importance of Soil Mineral N Supply at the Start of the Growing Season for Assessing N Fertilizer Requirements of Winter Wheat. Landwirtschaftliche Forschung, Sonderheft 32(1):100-114.
  • Schlichting E, Blume HP (1966) Bodenkundliches Praktikum. Verlag Paul Parey, Hamburg und Berlin.
  • Sierra J, Martí E, Garau MA, Cruanas R (2007) Effects of the Agronomic Use of Olive Oil Mill Wastewater Field Experiment. Science of the Total Environment 378: 90–94.
  • Sparling G (1992) Ratio of Microbial Biomass C to Soil Organic C as a Sensitive Indicator of Changes in Soil Organic Matter. Australian Journal of Soil Research 30:195-197.
  • Tsagaraki E, Lazarides N, Petrotos KB (2007) Olive Mill Wastewater Treatment. In: Oreopoulou V, Russ W (Eds.), Utilization of By-products and Treatment of Waste in the Food Industry, LLC, NY, USA, Springer Science+Business Media, 132-157.
  • Vance ED, Brookes PC, Jenkinson DS (1987) An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biology & Biochemistry 19:703 – 707.
  • Yay ASE, Oral HV, Onay TT, Yenigün O (2012) A Study on Olive Mill Wastewater Management in Turkey: A Questionnaire and Experimental Approach. Resources, Conservation and Recycling 60:64-71.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research
Authors

Onur Bayız This is me 0000-0002-6114-9613

Nur Okur 0000-0002-7796-1227

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 15 Issue: 1

Cite

APA Bayız, O., & Okur, N. (2018). Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15(1), 25-32. https://doi.org/10.25308/aduziraat.336073
AMA Bayız O, Okur N. Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri. ADÜ ZİRAAT DERG. June 2018;15(1):25-32. doi:10.25308/aduziraat.336073
Chicago Bayız, Onur, and Nur Okur. “Kumlu Tın Bünyeli Bir Toprağın C Ve N-Dinamiği Üzerine Ham Ve Arıtılmış Zeytin Karasuyunun Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15, no. 1 (June 2018): 25-32. https://doi.org/10.25308/aduziraat.336073.
EndNote Bayız O, Okur N (June 1, 2018) Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15 1 25–32.
IEEE O. Bayız and N. Okur, “Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri”, ADÜ ZİRAAT DERG, vol. 15, no. 1, pp. 25–32, 2018, doi: 10.25308/aduziraat.336073.
ISNAD Bayız, Onur - Okur, Nur. “Kumlu Tın Bünyeli Bir Toprağın C Ve N-Dinamiği Üzerine Ham Ve Arıtılmış Zeytin Karasuyunun Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15/1 (June 2018), 25-32. https://doi.org/10.25308/aduziraat.336073.
JAMA Bayız O, Okur N. Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri. ADÜ ZİRAAT DERG. 2018;15:25–32.
MLA Bayız, Onur and Nur Okur. “Kumlu Tın Bünyeli Bir Toprağın C Ve N-Dinamiği Üzerine Ham Ve Arıtılmış Zeytin Karasuyunun Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 15, no. 1, 2018, pp. 25-32, doi:10.25308/aduziraat.336073.
Vancouver Bayız O, Okur N. Kumlu Tın Bünyeli Bir Toprağın C ve N-Dinamiği Üzerine Ham ve Arıtılmış Zeytin Karasuyunun Etkileri. ADÜ ZİRAAT DERG. 2018;15(1):25-32.