Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Global Climate Change on Photosynthesis

Yıl 2018, Cilt: 15 Sayı: 2, 95 - 99, 31.12.2018
https://doi.org/10.25308/aduziraat.410790

Öz

As a consequence of global climate change, increasing carbon dioxide, temperature and drought factors and their interactions are affecting photosynthesis. In addition to different photosynthesis mechanisms such as C3 and C4 in plants, C4 plants have three subspecies: NAD-malic enzyme (NAD-ME), NADP-malic enzyme (NADP-ME) and PEP carboxylase. The NAD-ME plants had more water use efficiency under arid conditions than NADP-ME plants, NAD-ME C4 plants have better growth and photosynthesis activity under increasing CO2 conditions.  C4 plants show less response to increased CO2 conditions than other plant species on the other hand, it uses water and nitrogen more effectively. For this reason, some C3 crops especially wheat and rice are undergoing breeding experiments to transfer the C4 pathway.

Kaynakça

  • Abdelhaliem E, Al-Huqail AA (2016). Detection of protein and DNA damage induced by elevated carbon dioxide and ozone in Triticum aestivum L. using biomarker and comet assay. Genetics and Molecular Research, 15:DOI http://dx.doi.org/10.4238 /gmr. 15028736 [Erişim Tarihi: 10.10.2017].
  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004). Testing the 'source–sink‘ hypothesis of downregulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122: 85-94.
  • Badger MR, Price GD (1994). The Role of Carbonic Anhydrase in Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 45: 369-392.
  • Bayraç HN, Doğan E (2016). Türkiye‘de İklim Değişikliğinin Tarım Sektörü Üzerine Etkileri. Eskişehir Osmangazi Üniv. İİBF Derg. 11(1):23-48.
  • Bita CE, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Sci. 4 (273): 1-18.
  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian R, Taher A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010). Plant breeding and climate changes. Journal of Agricultural Science 148: 627-637.
  • Crafts-Brandner SJ, Salvucci ME (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129: 1773-1780.
  • Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016). Exogenous glutathione improves high rootzone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Scientific Reports 6: 35424 DOI: 10.1038/srep35424 [Erişim Tarihi: 25.02.2018].
  • Feller U (2016). Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Journal of Plant Physiology 203: 84-94.
  • Gao F, Chen F, Ge F (2010). Elevated CO2 lessens predation of Chrysopa sinica on Aphis gossypii. Entomol. Exp. Appl. 135: 135-140.
  • Ghannoum O, von Caemmerer S, Conroy JP (2002). The effect of drought on plant water use efficiency of 9 NAD-ME and 9 NADP-ME C4 grasses. Functional Plant Biology 29:1337-1348.
  • Griffin KL, Anderson OR Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, Tissue DT, Turnbull M, Whitehead D (2001). Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proceedings of the National Academy of Science of the USA 98: 2473-2478.
  • Hatch MD (1987). C4 photosynthesis: a unique blender of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta 895: 357-369.
  • Hedhly A, Hormaza JI, Herrero M (2008). Global warming and sexual plant reproduction. Trends Plant Sci. 1: 30-36.
  • Hua J (2009). From freezing to scorching, transcriptional responses to temperature variations in plants. Current Opinion Plant Biology 12: 568-573.
  • Lane A, Jarvis A (2007). Changes in climate will modify that geography of crop suitability: agricultural Biodiversity can help with adaptation. Open Access J. 4:1 (ICRISAT).
  • Law RD, Crafts-Brandner SJ (1999). Inhibition and Acclimation of Photosynthesis to Heat Stress Is Closely Correlated with Activation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 120(1): 173-182.
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60 (10): 2859-2876.
  • Leegood RC (2002). C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany 53: 581-590.
  • Liu H, Osborne CP (2015). Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. J. Exp. Bot. 66: 761-773.
  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001). Genetic engineering of C4 photosynthesis. Ann. Rev. Plant Physiol. Mol. Biol. 52: 297-314.
  • Morison JIL, Lawlor DW (1999). Interactions between increasing CO2 concentration and temperature on plants growth. Plant, Cell & Environment 22: 659-682.
  • Nagai T, Makino A (2009). Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth. Plant Cell Physiol. 50(4): 744-755.
  • Nagai T, Makino A (2009). Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth. Plant Cell Physiol. 50(4): 744-755.
  • Oksanen E, Sober J, Karnosky DF (2001). Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environmental Pollution 115: 437-446.
  • Önen H, Özcan S (2010). İklim Değişikliğine Bağlı Olarak Yabancı Ot Mücadelesi. Ed. Sayılı, M. 2010. İklim Değişikliğinin Tarıma Etkileri ve Alınabilecek Önlemler. T.C. Kayseri Valiliği İl Tarım Müdürlüğü. 2: 336-357. Fidan Ofset, Kayseri.
  • Pathak H, Aggrawal PK, Singh SD (2009). Climate change impact, adaptation and mitigation in agriculture: methodology for assesement and applications. Indian Agricultural Research Institute. New Delhi. p:302.
  • Prasad P, Vara V, Allen Jr LH, Boote KJ (2005). Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes. J. Crop Improv. 13: 113-155.
  • Rao X, Dixon RA (2016). The differences between NADME and NAD-ME subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes. Frontiers in Plant Science. 7:1525.
  • Reddy KR, Hodges HF, McKinion JM (1995). Carbon dioxide and temperature effects on pima cotton growth. Agriculture, Ecosystems and Environment. 54:17-29.
  • Sage RF, Pearcy RW (1987). The Nitrogen Use Efficiency of C3 and C4 Plants II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodıum album L. and Amaranthus retroflexus L. Plant Physiology 84: 959-963.
  • Sayılğan Ç (2016). Küresel Sıcaklık Artışının Buğdayda Beklenen Etkileri ve Yüksek Sıcaklığa Toleranslılığın Fizyolojik Göstergeleri. YYÜ Tar. Bil. Derg. 26(3): 439-447.
  • Scafaro AP, Haynes PA, Atwell BJ (2010). Physiological and molecular changes in Oryza meridionalis Ng. a heattolerant species of wild rice. J.Exp.Bot. 61: 191-202.
  • Singh PR, Prasad PVR, Reddy KR (2013). Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry. Advances in Agronomy. 118: 49-84.
  • Swann ALS, Hoffman FM, Koven CD, Randerson JT (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity Proc. Natl. Acad. Sci. 113(36): 10019-10024.
  • Tátrai ZA, Sanoubar R, Pluhár Z, Mancarella S, Orsini F, Gianquinto G (2016). Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. 8 pages. http ://dx.doi.org/10.1155/2016/4165750 [Erişim Tarihi: 18.09.2017].
  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 172(1):92-103.
  • Ton P (2011). Cotton and climate change: impacts and options to mitigate and adapt. International Trade Center. Geneva, Switzerland. [Erişim Tarihi: 10.10.2017].
  • Ulukan H (2010). Global Climate Change, Greenhouse Gases (GHGs) and Cultivated Plants. Ankara University Journal of Environmental Sciences. 2(1): 71-79.
  • Vince Ö, Zoltán M (2011). Photosynthetic activity and environmental factors. Plant Physiology, http://www.tankonyvtar.hu/en/tartalom/tamop425/0010_1A_Book_ angol _01_ novenyelettan/ch03s03.html [Erişim Tarihi: 15.11.2017].
  • Wang P, Vlad D, Langdale JA (2016). Finding the genes to build C4 rice. Current Opinion in Plant Biology. 31: 44-50.
  • Way DA, Katul GG, Manzoni S, Vico G (2014). Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany. 65 (13): 3683-3693.
  • Whiteman PC, Koller D (1967). Interactions of carbon dioxide concentration, light intensity and temperature on plant resistance to water vapour and carbon dioxide diffusion. New Phytol. 66: 463-473.
  • Xu Z, Jiang Y, Jia B, Zhou G (2016). Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. Frontiers in Plant Sci. Volume 7, Article 657.

Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri

Yıl 2018, Cilt: 15 Sayı: 2, 95 - 99, 31.12.2018
https://doi.org/10.25308/aduziraat.410790

Öz

Küresel iklim değişikliğinin sonucu olarak artan
karbondioksit, sıcaklık ve kuraklık faktörleri ve karşılıklı etkileşimleri
fotosentezi etkilemektedir. Bitkilerde C3 ve C4 gibi
farklı fotosentez mekanizmalarının yanı sıra C4 bitkilerinde
NAD-malik enzim (NAD-ME), NADP-malik enzim (NADP-ME) ve PEP karboksilaz olmak
üzere üç alt tür oldu
ğu gözlenmektedir. NAD-ME bitkilerinin
kurak koşullar altında su kullanım etkinli
ği, NADP-ME bitkilerine göre daha fazla olup, NAD-ME C4
bitkileri artan CO2 koşullarında daha iyi büyüme ve fotosentez
etkinli
ğine sahiptir. C4 bitkileri artan CO2
koşullarına, di
ğer bitki türlerine göre daha az tepki
göstermekte buna karşın suyu ve azotu daha etkin kullanmaktadır. Bu nedenle bu
ğday ve çeltik başta olmak üzere bazı C3 bitkilerine C4 yolunun aktarılması yönünde ıslah çalışmaları devam etmektedir.

Kaynakça

  • Abdelhaliem E, Al-Huqail AA (2016). Detection of protein and DNA damage induced by elevated carbon dioxide and ozone in Triticum aestivum L. using biomarker and comet assay. Genetics and Molecular Research, 15:DOI http://dx.doi.org/10.4238 /gmr. 15028736 [Erişim Tarihi: 10.10.2017].
  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004). Testing the 'source–sink‘ hypothesis of downregulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122: 85-94.
  • Badger MR, Price GD (1994). The Role of Carbonic Anhydrase in Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 45: 369-392.
  • Bayraç HN, Doğan E (2016). Türkiye‘de İklim Değişikliğinin Tarım Sektörü Üzerine Etkileri. Eskişehir Osmangazi Üniv. İİBF Derg. 11(1):23-48.
  • Bita CE, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Sci. 4 (273): 1-18.
  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian R, Taher A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010). Plant breeding and climate changes. Journal of Agricultural Science 148: 627-637.
  • Crafts-Brandner SJ, Salvucci ME (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129: 1773-1780.
  • Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016). Exogenous glutathione improves high rootzone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Scientific Reports 6: 35424 DOI: 10.1038/srep35424 [Erişim Tarihi: 25.02.2018].
  • Feller U (2016). Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Journal of Plant Physiology 203: 84-94.
  • Gao F, Chen F, Ge F (2010). Elevated CO2 lessens predation of Chrysopa sinica on Aphis gossypii. Entomol. Exp. Appl. 135: 135-140.
  • Ghannoum O, von Caemmerer S, Conroy JP (2002). The effect of drought on plant water use efficiency of 9 NAD-ME and 9 NADP-ME C4 grasses. Functional Plant Biology 29:1337-1348.
  • Griffin KL, Anderson OR Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, Tissue DT, Turnbull M, Whitehead D (2001). Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proceedings of the National Academy of Science of the USA 98: 2473-2478.
  • Hatch MD (1987). C4 photosynthesis: a unique blender of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta 895: 357-369.
  • Hedhly A, Hormaza JI, Herrero M (2008). Global warming and sexual plant reproduction. Trends Plant Sci. 1: 30-36.
  • Hua J (2009). From freezing to scorching, transcriptional responses to temperature variations in plants. Current Opinion Plant Biology 12: 568-573.
  • Lane A, Jarvis A (2007). Changes in climate will modify that geography of crop suitability: agricultural Biodiversity can help with adaptation. Open Access J. 4:1 (ICRISAT).
  • Law RD, Crafts-Brandner SJ (1999). Inhibition and Acclimation of Photosynthesis to Heat Stress Is Closely Correlated with Activation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 120(1): 173-182.
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60 (10): 2859-2876.
  • Leegood RC (2002). C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany 53: 581-590.
  • Liu H, Osborne CP (2015). Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. J. Exp. Bot. 66: 761-773.
  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001). Genetic engineering of C4 photosynthesis. Ann. Rev. Plant Physiol. Mol. Biol. 52: 297-314.
  • Morison JIL, Lawlor DW (1999). Interactions between increasing CO2 concentration and temperature on plants growth. Plant, Cell & Environment 22: 659-682.
  • Nagai T, Makino A (2009). Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth. Plant Cell Physiol. 50(4): 744-755.
  • Nagai T, Makino A (2009). Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth. Plant Cell Physiol. 50(4): 744-755.
  • Oksanen E, Sober J, Karnosky DF (2001). Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environmental Pollution 115: 437-446.
  • Önen H, Özcan S (2010). İklim Değişikliğine Bağlı Olarak Yabancı Ot Mücadelesi. Ed. Sayılı, M. 2010. İklim Değişikliğinin Tarıma Etkileri ve Alınabilecek Önlemler. T.C. Kayseri Valiliği İl Tarım Müdürlüğü. 2: 336-357. Fidan Ofset, Kayseri.
  • Pathak H, Aggrawal PK, Singh SD (2009). Climate change impact, adaptation and mitigation in agriculture: methodology for assesement and applications. Indian Agricultural Research Institute. New Delhi. p:302.
  • Prasad P, Vara V, Allen Jr LH, Boote KJ (2005). Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes. J. Crop Improv. 13: 113-155.
  • Rao X, Dixon RA (2016). The differences between NADME and NAD-ME subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes. Frontiers in Plant Science. 7:1525.
  • Reddy KR, Hodges HF, McKinion JM (1995). Carbon dioxide and temperature effects on pima cotton growth. Agriculture, Ecosystems and Environment. 54:17-29.
  • Sage RF, Pearcy RW (1987). The Nitrogen Use Efficiency of C3 and C4 Plants II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodıum album L. and Amaranthus retroflexus L. Plant Physiology 84: 959-963.
  • Sayılğan Ç (2016). Küresel Sıcaklık Artışının Buğdayda Beklenen Etkileri ve Yüksek Sıcaklığa Toleranslılığın Fizyolojik Göstergeleri. YYÜ Tar. Bil. Derg. 26(3): 439-447.
  • Scafaro AP, Haynes PA, Atwell BJ (2010). Physiological and molecular changes in Oryza meridionalis Ng. a heattolerant species of wild rice. J.Exp.Bot. 61: 191-202.
  • Singh PR, Prasad PVR, Reddy KR (2013). Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry. Advances in Agronomy. 118: 49-84.
  • Swann ALS, Hoffman FM, Koven CD, Randerson JT (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity Proc. Natl. Acad. Sci. 113(36): 10019-10024.
  • Tátrai ZA, Sanoubar R, Pluhár Z, Mancarella S, Orsini F, Gianquinto G (2016). Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. 8 pages. http ://dx.doi.org/10.1155/2016/4165750 [Erişim Tarihi: 18.09.2017].
  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006). Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol. 172(1):92-103.
  • Ton P (2011). Cotton and climate change: impacts and options to mitigate and adapt. International Trade Center. Geneva, Switzerland. [Erişim Tarihi: 10.10.2017].
  • Ulukan H (2010). Global Climate Change, Greenhouse Gases (GHGs) and Cultivated Plants. Ankara University Journal of Environmental Sciences. 2(1): 71-79.
  • Vince Ö, Zoltán M (2011). Photosynthetic activity and environmental factors. Plant Physiology, http://www.tankonyvtar.hu/en/tartalom/tamop425/0010_1A_Book_ angol _01_ novenyelettan/ch03s03.html [Erişim Tarihi: 15.11.2017].
  • Wang P, Vlad D, Langdale JA (2016). Finding the genes to build C4 rice. Current Opinion in Plant Biology. 31: 44-50.
  • Way DA, Katul GG, Manzoni S, Vico G (2014). Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany. 65 (13): 3683-3693.
  • Whiteman PC, Koller D (1967). Interactions of carbon dioxide concentration, light intensity and temperature on plant resistance to water vapour and carbon dioxide diffusion. New Phytol. 66: 463-473.
  • Xu Z, Jiang Y, Jia B, Zhou G (2016). Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. Frontiers in Plant Sci. Volume 7, Article 657.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Düzeltme
Yazarlar

İlkay Yavaş 0000-0002-6863-9631

Aydın Ünay 0000-0002-7278-4428

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 15 Sayı: 2

Kaynak Göster

APA Yavaş, İ., & Ünay, A. (2018). Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15(2), 95-99. https://doi.org/10.25308/aduziraat.410790
AMA Yavaş İ, Ünay A. Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri. ADÜ ZİRAAT DERG. Aralık 2018;15(2):95-99. doi:10.25308/aduziraat.410790
Chicago Yavaş, İlkay, ve Aydın Ünay. “Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15, sy. 2 (Aralık 2018): 95-99. https://doi.org/10.25308/aduziraat.410790.
EndNote Yavaş İ, Ünay A (01 Aralık 2018) Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15 2 95–99.
IEEE İ. Yavaş ve A. Ünay, “Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri”, ADÜ ZİRAAT DERG, c. 15, sy. 2, ss. 95–99, 2018, doi: 10.25308/aduziraat.410790.
ISNAD Yavaş, İlkay - Ünay, Aydın. “Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15/2 (Aralık 2018), 95-99. https://doi.org/10.25308/aduziraat.410790.
JAMA Yavaş İ, Ünay A. Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri. ADÜ ZİRAAT DERG. 2018;15:95–99.
MLA Yavaş, İlkay ve Aydın Ünay. “Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 15, sy. 2, 2018, ss. 95-99, doi:10.25308/aduziraat.410790.
Vancouver Yavaş İ, Ünay A. Küresel İklim Değişikliğinin Fotosentez Üzerine Etkileri. ADÜ ZİRAAT DERG. 2018;15(2):95-9.