Students’ Quantitative Reasoning while Engaging in a Mathematical Modeling Task Designed for Learning Linear Function
Year 2018,
, 53 - 85, 30.11.2018
Aytuğ Özaltun Çelik
,
Esra Bukova Güzel
Abstract
It is important for students to think the quantities related to the linear functions, to construct new
quantities and to relate the different representations of linear functions
through quantitative reasoning. The purpose of this study is to examine the students’
quantitative reasoning while engaging in the mathematical modeling task, which
was designed, for learning the linear function.
The participants of the study conducted with a teaching experiment were
consisted of ten 10th grade students with three girls and seven boys. The
students engaged in the written task in pairs which they decided to work
together themselves. The data were each group’s written solutions and the
transcriptions of the camera recordings of the process of working on the task.
The collected data were analysed in two stages as ongoing analyses and
retrospective analyses in the direction of the students' quantitative
reasoning. Based on the data analysis, it was seen that
students were cognitively more active while they were working on a situation
which they had experienced or which was meaningful for them. It could be said
that designing the task by considering the students’ quantitative reasoning
triggering reflective abstraction was important factor in supporting the
students to construct the quantities. In this context, it is suggested to use
from mathematical modeling tasks during the teaching concept.
References
- Acevedo Nistal A., Van Dooren W. & Verschaffel L. 2014. Improving students’ representational flexibility in linear-function problems: An intervention. Educational Psychology, 34(6) , 763-786.
- CCSSI (2010). Common Core State Standards for mathematics. http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf adresinden alındı.
- Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66–86.
- Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationships through quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives. (s. 215-238). Springer, Berlin Heidelberg.
- Hohensee, C. (2016). Student noticing in classroom settings: A process underlying influences on prior ways of reasoning. The Journal of Mathematical Behavior, 42, 69-91.
- Johnson, H. L. (2013). Reasoning about quantities that change together. Mathematics Teacher, 106(9), 704-708.
- Johnson, H. L. (2015). Secondary students’ quantification of ratio and rate: A framework for reasoning about change in covarying quantities. Mathematical Thinking and Learning, 17(1), 64-90.
- Konold C. & Johnson D. K. (1991) Philosophical and psychological aspects of constructivism. In Steffe L. P. (Ed.) Epistemological foundations of mathematical experience (s. 1-13). Springer, New York.
- Leinhardt, G., Zaslavsky, O. & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
- Lobato, J. & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The Journal of Mathematical Behavior, 21(1), 87-116.
- MEB (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Talim Terbiye Başkanlığı Yayınları.
- Metcalf, R. C. (2007). The nature of students’ understanding of quadratic functions, Yayınlanmamış doktora tezi, The State University of New York at Buffalo, ABD.
- Moore, K. C., Carlson, M. P. & Oehrtman, M. (2009). The role of quantitative reasoning in solving applied precalculus problems. Proceedings of the Twelfth Annual Conference on Research in Undergraduate Mathematics Education. Raleigh, NC: North Carolina State University.
- National Council of Teachers of Mathematics. (2001). Practice-based professional development for teachers of mathematics. Reston, VA: National Council of Teachers of Mathematics.
- Nielsen, L. E. J. (2015). Understanding quadratic functions and solving quadratic equations: An analysis of student thinking and reasoning. Yayınlanmamış doktora tezi, Washington Üniversitesi, Missouri, ABD.
- Oehrtman, M. C., Carlson, M. P. & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. M. P.
- Carlson & C. Rasmussen (Ed.), Making the connection: Research and practice in undergraduate mathematics (s. 150-171). Washington, DC: Mathematical Association of America.
- Simon, M. A. (2000). Constructivism, mathematics teacher education, and research in mathematics teacher development. In L.P.. Steffe & P.W. Thompson ( Eds.). Radical constructivism in action: Building on the pioneering work of Ernst von. Glasersfeld (s. 213-230). London: Routledge-Falmer.
- Simon, M., Tzur, R., Heinz, K. & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305-329.
- Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. R. Lesh & A. E. Kelly (Ed.), Research design in mathematics and science education (s. 267-307). Hillsdale, NJ: Erlbaum.
- Tanışlı, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. The Journal of Mathematical Behavior, 30(3), 206-223.
- Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in Collegiate Mathematics Education, 1 (Issues in Mathematics Education, Vol. 4, s. 21–44). Providence, RI: American Mathematical Society.
- Thompson, P. W. (2013). Why use f (x) when all we really mean is y. OnCore, The Online Journal of the AAMT, 18-26.
- Wang, Y., Barmby, P., & Bolden, D. (2017). Understanding linear function: a comparison of selected textbooks from England and Shanghai. International Journal of Science and Mathematics Education, 15(1), 131-153.
- Weber, E., Ellis, A., Kulow, T. & Ozgur, Z. (2014). Six principles for quantitative reasoning and modeling. Mathematics Teacher, 108(1), 24-30.
- Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93(3), 333-361.
Doğrusal Fonksiyonun Öğrenilmesine Yönelik Tasarlanan Modelleme Etkinliği Üzerine Çalışan Öğrencilerin Nicel Muhakemeleri
Year 2018,
, 53 - 85, 30.11.2018
Aytuğ Özaltun Çelik
,
Esra Bukova Güzel
Abstract
Öğrencilerin nicel
muhakeme yoluyla doğrusal fonksiyondaki temel çoklukları düşünmeleri, yeni
çokluklar oluşturmaları ve farklı gösterimler arasında ilişkilendirmeler
yapmaları kavramsal öğrenme için önemlidir. Bu çalışmada doğrusal fonksiyonun öğrenilmesine
yönelik tasarlanan modelleme etkinliği üzerinde çalışan öğrencilerin nicel
muhakemelerini incelemek amaçlanmıştır. Öğretim deneyine dayalı
gerçekleştirilen çalışmanın katılımcılarını bir fen lisesindeki üçü kız, yedisi
erkek on tane 10.sınıf öğrencisi oluşturmaktadır. Öğrenciler yazılı olarak
verilen etkinlik üzerinde kendi belirledikleri ikişer kişilik gruplar halinde
çalışmışlardır. Grupların çözüm kağıtları ve etkinlik çalışmaları boyunca
alınan video kamera kayıtlarının transkriptleri araştırmanın verilerini oluşturmuştur.
Toplanan veriler öğrencilerin nicel muhakemeleri doğrultusunda devam eden
analizler ve geriye dönük analizler olarak iki aşamada analiz edilmiştir. Analizler,
öğrencilerin deneyimledikleri ya da anlam yükleyebildikleri bir durum üzerinde
çalışırlarken zihinsel olarak daha aktif eylemler sergilediklerini göstermiştir.
Etkinliğin yansıtıcı soyutlamayı destekleyecek nicel muhakemeleri göz önüne
alarak tasarlanmasının öğrencilerin çoklukları oluşturmalarını desteklemede
önemli bir etken olduğu söylenebilir. Bu bağlamda modelleme etkinliklerinden
kavram öğretimi süreçlerinde yararlanılması önerilmektedir.
References
- Acevedo Nistal A., Van Dooren W. & Verschaffel L. 2014. Improving students’ representational flexibility in linear-function problems: An intervention. Educational Psychology, 34(6) , 763-786.
- CCSSI (2010). Common Core State Standards for mathematics. http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf adresinden alındı.
- Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66–86.
- Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationships through quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives. (s. 215-238). Springer, Berlin Heidelberg.
- Hohensee, C. (2016). Student noticing in classroom settings: A process underlying influences on prior ways of reasoning. The Journal of Mathematical Behavior, 42, 69-91.
- Johnson, H. L. (2013). Reasoning about quantities that change together. Mathematics Teacher, 106(9), 704-708.
- Johnson, H. L. (2015). Secondary students’ quantification of ratio and rate: A framework for reasoning about change in covarying quantities. Mathematical Thinking and Learning, 17(1), 64-90.
- Konold C. & Johnson D. K. (1991) Philosophical and psychological aspects of constructivism. In Steffe L. P. (Ed.) Epistemological foundations of mathematical experience (s. 1-13). Springer, New York.
- Leinhardt, G., Zaslavsky, O. & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
- Lobato, J. & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The Journal of Mathematical Behavior, 21(1), 87-116.
- MEB (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Talim Terbiye Başkanlığı Yayınları.
- Metcalf, R. C. (2007). The nature of students’ understanding of quadratic functions, Yayınlanmamış doktora tezi, The State University of New York at Buffalo, ABD.
- Moore, K. C., Carlson, M. P. & Oehrtman, M. (2009). The role of quantitative reasoning in solving applied precalculus problems. Proceedings of the Twelfth Annual Conference on Research in Undergraduate Mathematics Education. Raleigh, NC: North Carolina State University.
- National Council of Teachers of Mathematics. (2001). Practice-based professional development for teachers of mathematics. Reston, VA: National Council of Teachers of Mathematics.
- Nielsen, L. E. J. (2015). Understanding quadratic functions and solving quadratic equations: An analysis of student thinking and reasoning. Yayınlanmamış doktora tezi, Washington Üniversitesi, Missouri, ABD.
- Oehrtman, M. C., Carlson, M. P. & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. M. P.
- Carlson & C. Rasmussen (Ed.), Making the connection: Research and practice in undergraduate mathematics (s. 150-171). Washington, DC: Mathematical Association of America.
- Simon, M. A. (2000). Constructivism, mathematics teacher education, and research in mathematics teacher development. In L.P.. Steffe & P.W. Thompson ( Eds.). Radical constructivism in action: Building on the pioneering work of Ernst von. Glasersfeld (s. 213-230). London: Routledge-Falmer.
- Simon, M., Tzur, R., Heinz, K. & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305-329.
- Steffe, L. P. & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. R. Lesh & A. E. Kelly (Ed.), Research design in mathematics and science education (s. 267-307). Hillsdale, NJ: Erlbaum.
- Tanışlı, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. The Journal of Mathematical Behavior, 30(3), 206-223.
- Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in Collegiate Mathematics Education, 1 (Issues in Mathematics Education, Vol. 4, s. 21–44). Providence, RI: American Mathematical Society.
- Thompson, P. W. (2013). Why use f (x) when all we really mean is y. OnCore, The Online Journal of the AAMT, 18-26.
- Wang, Y., Barmby, P., & Bolden, D. (2017). Understanding linear function: a comparison of selected textbooks from England and Shanghai. International Journal of Science and Mathematics Education, 15(1), 131-153.
- Weber, E., Ellis, A., Kulow, T. & Ozgur, Z. (2014). Six principles for quantitative reasoning and modeling. Mathematics Teacher, 108(1), 24-30.
- Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93(3), 333-361.