Research Article
BibTex RIS Cite

Yarı-Galileo Uzayında Belli Bir Ortalama Eğriliğe Sahip Yüzeyler Üzerine

Year 2021, Volume: 11 Issue: 2, 215 - 226, 31.12.2021
https://doi.org/10.37094/adyujsci.907765

Abstract

Bu çalışmada; yarı-Galileo uzayında, öteleme ve ayrışabilir yüzeyler denilen iki belirgin sınıf ele alınmıştır. 𝑣 , bir 𝑣 izotropik vektörün normal bileşeni olmak üzere bu yüzeylerden
ortalama eğriliği 𝐻 = 𝑣! denklemini sağlayanlar elde edilmiştir.

References

  • [1] Bueno, A., Translating solitons of the mean curvature flow in the space H^2×R, Journal of Geometry, (109, Article number )42, 2018. https://doi.org/10.1007/s00022-018-0447-x, 2018.
  • [2] López, R., Separation of variables in equations of mean-curvature type, Proceedings of the Royal Society of Edinburgh Section A, (146)5146(5), 1017-1035, 2016.
  • [3] López, R., Some geometric properties of translating solitons in Euclidean space, Journal of Geometry, (109, Article number )40, 2018. https://doi.org/10.1007/s00022-018-0444-0
  • [4] Aydin, M.E., López, R., Ruled translating solitons in Minkowski 3-space, preprintarXiv:2109.05254v1, 2021.
  • [5] Aydin, M.E., López, R., Translating solitons by separation of variables, arXiv:2109.05253v1 preprint, 2021.
  • [6] Angenent, S., On the formation of singularities in the curve shortening flow, Journal of Differential Geometry, 33, 601-633, 1991.
  • [7] Halldorsson, H., Self-similar solutions to the curve shortening flow, Transactions of the American Mathematical Society, (364)10364(10), 5285-5309, 2012.
  • [8] Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Mathematics, 16,747-766, 2018.
  • [9] Altiin, M., Kazan, A., Karadag, H. B., Ruled surfaces in E^3 with density, Honam Mathematical Journal,. 41(4), 683-695, 2019.
  • [10] Hieu, D.T., Hoang, N.M., Ruled minimal surfaces in R^3 with density e^z , Pacific Journal of Mathematics, (243)2243(2), 277-285, 2009.
  • [11] Abdel-Aziz, H.S., Saad, M.K., Ali, H.A., Affine factorable surfaces in pseudo-Galilean space, arXiv:1812.00765v1 [math.GM].
  • [12] Aydin, M. E., , Ogrenmis, A.O., Ergut, M., Classification of factorable surfaces in the pseudo-Galilean space, Glasnik Matematicki Series III, (70)5050(70), 441-451, 2015.
  • [13] Aydin, M. E., Kulahci, M. A., Ogrenmis, A.O., Non-zero constant curvature factorable surfaces in pseudo-Galilean space, Communications of the Korean Mathematical Society, 33 (1), 247-259, 2018.
  • [14] Aydin, M. E., Kulahci, M. A., Ogrenmis, A.O., Constant curvature translation surfaces in Galilean 3-space, International Electronic Journal of Geometry, 12(1), 9-19, 2019.
  • [15] Dede, M., Ekici, C., On minimal surfaces in Galilean space, Conference Proceedings of Science and Technology, (2)22(2), 142-147, 2019.
  • [16] Kelleci, A., , Translation-factorable surfaces with vanishing curvatures in Galilean 3-spaces, International Journal of Maps in Mathematics, (4)14(1), 14-26, 2021.
  • [17] Milin-Sipus, Z., Divjak, B., Translation surface in the Galilean space, Glasnik Matematicki Series III, (46)246(66), 455-469, 2011.
  • [18] Milin-Sipus, Z., On a certain class of translation surfaces in a pseudo-Galilean space, International Mathematical Forum, , (6)236(23), 1113-1125, 2012.
  • [19] Yoon, D.W., , Some classification of translation surfaces in Galilean 3-space, International Journal of Mathematical Analysis, (6)2828(6), 1355-1361, 2012.
  • [20] Abdel-Baky, R.A., and Unluturk, Y., A study on classification of translation surfaces in pseudo-Galilean 3-space, Journal of Coupled Systems and Multiscale Dynamics, (6)3, 233-240, 2018.
  • [21] Bansal, P., , Shahid, M. H., On classification of factorable surfaces in Galilean space G^3, Jordan Journal of Mathematics and Statistics, (12)312(3), 289-306, 2019.
  • [22] Cakmak, A., Karacan, M.K., Kiziltug, S., Yoon, D.W., Corrigendum to translation surfaces in the 3-dimensional Galilean space satisfying Δ^II x_i=λ_i x_i , Bulletin of the Korean Mathematical Society, (56)256(2), 549-554, 2019. [23] Lone, M.S., Homothetical surfaces in three dimensional pseudo-Galilean spaces satisfying Δ^II x_i=λ_i x_i, Advances in Applied Clifford Algebras, 29(5), (29)92, 2019. https://doi.org/10.1007/s00006-019-1007-7 [24] Kazan, A., Karadag, H.B., Weighted minimal and weighted flat surfaces of revolution in Galilean 3-space with density, International Journal of Analysis and Applications, (16)316(3), 414-426, 2018. [25] Mosa, S., Elzawy, M., Helicoidal surfaces in Galilean space with density, Frontiers in Physics, 8, Article (8)81, 2020. https://doi.org/10.3389/fphy.2020.00081.
  • [26] Yoon, D.W., Weighted minimal translation surfaces in the Galilean space with density, Open Mathematics, 15, 459-466, 2017.
  • [27] Yoon, D.W., Lee, J.W., , Lee, C.W., φ- minimal rotational surfaces in pseudo-Galilean space with density, Annales Polonici Mathematici, 120, 183-196, 2017.
  • [28] Altin, M., Unal, I., Surface family with common line of curvature in 3-dimensional Galilean space, The journal Facta Universitatis: Series Mathematics and Informatics, (35)535(5), 1315-1325, 2020.
  • [29] Divjak, B., Curves in pseudo-Galilean geometry, Annales Universitas Scientiarium Budapestinesis, 41,117-128,1998.
  • [30] Milin-Sipus, Z., Divjak, B., Surfaces of constant curvature in the pseudo-Galilean space, International Journal of Mathematics and Mathematical Sciences, Art ID375264, 28pp., 2012.
  • [31] Mólnar, E., , The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie, (38)238(2), 261-288, 1997.
  • [32] Onishchick, A., Sulanke, R., Projective and Cayley-Klein Geometries, Springer, 2006.
  • [33] Röschel, O., Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984.
  • [34] López, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, International Electronic Journal of Geometry, (7)17(1), 44-107, 2014.
  • [35] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

On Surfaces in pseudo-Galilean space with prescribed mean curvature

Year 2021, Volume: 11 Issue: 2, 215 - 226, 31.12.2021
https://doi.org/10.37094/adyujsci.907765

Abstract

In this work, we consider certain classes of surfaces in the pseudo-Galilean space, the translation and factorable surfaces. We classify these surfaces that satisfy the equation H=v^ , where H is the mean curvature and v^ the normal component of an isotropic vector v.

References

  • [1] Bueno, A., Translating solitons of the mean curvature flow in the space H^2×R, Journal of Geometry, (109, Article number )42, 2018. https://doi.org/10.1007/s00022-018-0447-x, 2018.
  • [2] López, R., Separation of variables in equations of mean-curvature type, Proceedings of the Royal Society of Edinburgh Section A, (146)5146(5), 1017-1035, 2016.
  • [3] López, R., Some geometric properties of translating solitons in Euclidean space, Journal of Geometry, (109, Article number )40, 2018. https://doi.org/10.1007/s00022-018-0444-0
  • [4] Aydin, M.E., López, R., Ruled translating solitons in Minkowski 3-space, preprintarXiv:2109.05254v1, 2021.
  • [5] Aydin, M.E., López, R., Translating solitons by separation of variables, arXiv:2109.05253v1 preprint, 2021.
  • [6] Angenent, S., On the formation of singularities in the curve shortening flow, Journal of Differential Geometry, 33, 601-633, 1991.
  • [7] Halldorsson, H., Self-similar solutions to the curve shortening flow, Transactions of the American Mathematical Society, (364)10364(10), 5285-5309, 2012.
  • [8] Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Mathematics, 16,747-766, 2018.
  • [9] Altiin, M., Kazan, A., Karadag, H. B., Ruled surfaces in E^3 with density, Honam Mathematical Journal,. 41(4), 683-695, 2019.
  • [10] Hieu, D.T., Hoang, N.M., Ruled minimal surfaces in R^3 with density e^z , Pacific Journal of Mathematics, (243)2243(2), 277-285, 2009.
  • [11] Abdel-Aziz, H.S., Saad, M.K., Ali, H.A., Affine factorable surfaces in pseudo-Galilean space, arXiv:1812.00765v1 [math.GM].
  • [12] Aydin, M. E., , Ogrenmis, A.O., Ergut, M., Classification of factorable surfaces in the pseudo-Galilean space, Glasnik Matematicki Series III, (70)5050(70), 441-451, 2015.
  • [13] Aydin, M. E., Kulahci, M. A., Ogrenmis, A.O., Non-zero constant curvature factorable surfaces in pseudo-Galilean space, Communications of the Korean Mathematical Society, 33 (1), 247-259, 2018.
  • [14] Aydin, M. E., Kulahci, M. A., Ogrenmis, A.O., Constant curvature translation surfaces in Galilean 3-space, International Electronic Journal of Geometry, 12(1), 9-19, 2019.
  • [15] Dede, M., Ekici, C., On minimal surfaces in Galilean space, Conference Proceedings of Science and Technology, (2)22(2), 142-147, 2019.
  • [16] Kelleci, A., , Translation-factorable surfaces with vanishing curvatures in Galilean 3-spaces, International Journal of Maps in Mathematics, (4)14(1), 14-26, 2021.
  • [17] Milin-Sipus, Z., Divjak, B., Translation surface in the Galilean space, Glasnik Matematicki Series III, (46)246(66), 455-469, 2011.
  • [18] Milin-Sipus, Z., On a certain class of translation surfaces in a pseudo-Galilean space, International Mathematical Forum, , (6)236(23), 1113-1125, 2012.
  • [19] Yoon, D.W., , Some classification of translation surfaces in Galilean 3-space, International Journal of Mathematical Analysis, (6)2828(6), 1355-1361, 2012.
  • [20] Abdel-Baky, R.A., and Unluturk, Y., A study on classification of translation surfaces in pseudo-Galilean 3-space, Journal of Coupled Systems and Multiscale Dynamics, (6)3, 233-240, 2018.
  • [21] Bansal, P., , Shahid, M. H., On classification of factorable surfaces in Galilean space G^3, Jordan Journal of Mathematics and Statistics, (12)312(3), 289-306, 2019.
  • [22] Cakmak, A., Karacan, M.K., Kiziltug, S., Yoon, D.W., Corrigendum to translation surfaces in the 3-dimensional Galilean space satisfying Δ^II x_i=λ_i x_i , Bulletin of the Korean Mathematical Society, (56)256(2), 549-554, 2019. [23] Lone, M.S., Homothetical surfaces in three dimensional pseudo-Galilean spaces satisfying Δ^II x_i=λ_i x_i, Advances in Applied Clifford Algebras, 29(5), (29)92, 2019. https://doi.org/10.1007/s00006-019-1007-7 [24] Kazan, A., Karadag, H.B., Weighted minimal and weighted flat surfaces of revolution in Galilean 3-space with density, International Journal of Analysis and Applications, (16)316(3), 414-426, 2018. [25] Mosa, S., Elzawy, M., Helicoidal surfaces in Galilean space with density, Frontiers in Physics, 8, Article (8)81, 2020. https://doi.org/10.3389/fphy.2020.00081.
  • [26] Yoon, D.W., Weighted minimal translation surfaces in the Galilean space with density, Open Mathematics, 15, 459-466, 2017.
  • [27] Yoon, D.W., Lee, J.W., , Lee, C.W., φ- minimal rotational surfaces in pseudo-Galilean space with density, Annales Polonici Mathematici, 120, 183-196, 2017.
  • [28] Altin, M., Unal, I., Surface family with common line of curvature in 3-dimensional Galilean space, The journal Facta Universitatis: Series Mathematics and Informatics, (35)535(5), 1315-1325, 2020.
  • [29] Divjak, B., Curves in pseudo-Galilean geometry, Annales Universitas Scientiarium Budapestinesis, 41,117-128,1998.
  • [30] Milin-Sipus, Z., Divjak, B., Surfaces of constant curvature in the pseudo-Galilean space, International Journal of Mathematics and Mathematical Sciences, Art ID375264, 28pp., 2012.
  • [31] Mólnar, E., , The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie, (38)238(2), 261-288, 1997.
  • [32] Onishchick, A., Sulanke, R., Projective and Cayley-Klein Geometries, Springer, 2006.
  • [33] Röschel, O., Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984.
  • [34] López, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, International Electronic Journal of Geometry, (7)17(1), 44-107, 2014.
  • [35] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Muhittin Evren Aydın 0000-0001-9337-8165

Alper Osman Öğrenmiş 0000-0001-5008-2655

Publication Date December 31, 2021
Submission Date April 1, 2021
Acceptance Date August 4, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Aydın, M. E., & Öğrenmiş, A. O. (2021). On Surfaces in pseudo-Galilean space with prescribed mean curvature. Adıyaman University Journal of Science, 11(2), 215-226. https://doi.org/10.37094/adyujsci.907765
AMA Aydın ME, Öğrenmiş AO. On Surfaces in pseudo-Galilean space with prescribed mean curvature. ADYU J SCI. December 2021;11(2):215-226. doi:10.37094/adyujsci.907765
Chicago Aydın, Muhittin Evren, and Alper Osman Öğrenmiş. “On Surfaces in Pseudo-Galilean Space With Prescribed Mean Curvature”. Adıyaman University Journal of Science 11, no. 2 (December 2021): 215-26. https://doi.org/10.37094/adyujsci.907765.
EndNote Aydın ME, Öğrenmiş AO (December 1, 2021) On Surfaces in pseudo-Galilean space with prescribed mean curvature. Adıyaman University Journal of Science 11 2 215–226.
IEEE M. E. Aydın and A. O. Öğrenmiş, “On Surfaces in pseudo-Galilean space with prescribed mean curvature”, ADYU J SCI, vol. 11, no. 2, pp. 215–226, 2021, doi: 10.37094/adyujsci.907765.
ISNAD Aydın, Muhittin Evren - Öğrenmiş, Alper Osman. “On Surfaces in Pseudo-Galilean Space With Prescribed Mean Curvature”. Adıyaman University Journal of Science 11/2 (December2021), 215-226. https://doi.org/10.37094/adyujsci.907765.
JAMA Aydın ME, Öğrenmiş AO. On Surfaces in pseudo-Galilean space with prescribed mean curvature. ADYU J SCI. 2021;11:215–226.
MLA Aydın, Muhittin Evren and Alper Osman Öğrenmiş. “On Surfaces in Pseudo-Galilean Space With Prescribed Mean Curvature”. Adıyaman University Journal of Science, vol. 11, no. 2, 2021, pp. 215-26, doi:10.37094/adyujsci.907765.
Vancouver Aydın ME, Öğrenmiş AO. On Surfaces in pseudo-Galilean space with prescribed mean curvature. ADYU J SCI. 2021;11(2):215-26.

...