Research Article
BibTex RIS Cite

Projektif Düzlemlerden Elde Edilen Projektif Graflar

Year 2018, Volume: 8 Issue: 2, 115 - 128, 28.12.2018

Abstract

Bu
makalede, uzun bir tarihe ve derin teorilere sahip olan iki alanı, graf teorisi
ve projektif geometri arasında bir ilişki kurmak için yeni bir metot sunduk. Bu
yeni metodu kullanarak sonlu projektif düzlemlerden elde edilen grafların
kombinatoryal özelliklerini araştırdık. Aynı zamanda bu kombinatoryal
özellikler ile projektif düzlemin mertebesi arasındaki ilişkileri inceledik.

References

  • [1] Aigner, M., Triesch, E.: Realizability and uniqueness in graphs, Discrete Math., 136, 3--20 (1994).
  • [2] Barrus, M. D., Donovan, E.: Neighborhood degree lists of graphs, Discrete Math., 341 (1), 175--183 (2018).
  • [3] Bondy A., Murty M. R.: Graph Theory, Springer-Verlag, London, (2008).
  • [4] Cangul. N.: Graf Teori-I, Temel Konular, Dora Yayınları, Bursa, (2017).
  • [5] Choudum, S. A.: On forcibly connected graphic sequences, Discrete Math., 96, 175--181 (1991),
  • [6] Hakimi, S. L.: On the realizability of a set of integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10, 496-506 (1962).
  • [7] Havel, V.: A remark on the existence of finite graphs (Czech), Casopic Pěst. Mat., 80, 477--480 (1955).
  • [8] Hughes D. R., Piper F. C.: Projective Planes, Springer, New York, (1973).
  • [9] Kaya R., Projektif Geometri, Osmangazi Üniversitesi Yayınları, Eskişehir, 392 s., (2005).
  • [10] Meng K. K., Fengming D. and Guan T. E.: Introduction to Graph Theory H3 Mathematics, World Scientific, (2007).
  • [11] Triphati, A., Venugopalan, S., West, D. B.: A short constructive proof of the Erdös-Gallai characterization of graphic lists, Discrete Math., 310, 843--844 (2010).
  • [12] Tyshkevich, R. I., Chernyak, A. A., Chernyak, Zh. A.: Graphs and degree sequences, Cybernetics, 23 (6), 734--745 (1987).
  • [13] Wallis W. D.: A Beginner’s Guide to Graph Theory, Birkhauser, Boston, (2007).
  • [14] West D. B.: Introduction to Graph Theory, Pearson, India, (2001).
  • [15] Zverovich, I. E., Zverovich, V. E.: Contributions to the theory of graphic sequences, Discrete Math, 105, 293--303 (1992).

Projective Graphs Obtained from Projective Planes

Year 2018, Volume: 8 Issue: 2, 115 - 128, 28.12.2018

Abstract

In this paper, we introduced a new method to relate
two areas, graph theory and projective geometry that have a long history and very deep theories. We investigated the combinatorial properties of the graphs
which are obtained from finite projective planes by using this new method. Also, we examined the relations
between these combinatorial properties and the order of the projective plane.

References

  • [1] Aigner, M., Triesch, E.: Realizability and uniqueness in graphs, Discrete Math., 136, 3--20 (1994).
  • [2] Barrus, M. D., Donovan, E.: Neighborhood degree lists of graphs, Discrete Math., 341 (1), 175--183 (2018).
  • [3] Bondy A., Murty M. R.: Graph Theory, Springer-Verlag, London, (2008).
  • [4] Cangul. N.: Graf Teori-I, Temel Konular, Dora Yayınları, Bursa, (2017).
  • [5] Choudum, S. A.: On forcibly connected graphic sequences, Discrete Math., 96, 175--181 (1991),
  • [6] Hakimi, S. L.: On the realizability of a set of integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10, 496-506 (1962).
  • [7] Havel, V.: A remark on the existence of finite graphs (Czech), Casopic Pěst. Mat., 80, 477--480 (1955).
  • [8] Hughes D. R., Piper F. C.: Projective Planes, Springer, New York, (1973).
  • [9] Kaya R., Projektif Geometri, Osmangazi Üniversitesi Yayınları, Eskişehir, 392 s., (2005).
  • [10] Meng K. K., Fengming D. and Guan T. E.: Introduction to Graph Theory H3 Mathematics, World Scientific, (2007).
  • [11] Triphati, A., Venugopalan, S., West, D. B.: A short constructive proof of the Erdös-Gallai characterization of graphic lists, Discrete Math., 310, 843--844 (2010).
  • [12] Tyshkevich, R. I., Chernyak, A. A., Chernyak, Zh. A.: Graphs and degree sequences, Cybernetics, 23 (6), 734--745 (1987).
  • [13] Wallis W. D.: A Beginner’s Guide to Graph Theory, Birkhauser, Boston, (2007).
  • [14] West D. B.: Introduction to Graph Theory, Pearson, India, (2001).
  • [15] Zverovich, I. E., Zverovich, V. E.: Contributions to the theory of graphic sequences, Discrete Math, 105, 293--303 (1992).
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Fatma Özen Erdoğan 0000-0002-9691-4565

Abdurrahman Dayıoğlu

Publication Date December 28, 2018
Submission Date August 17, 2018
Acceptance Date January 2, 2019
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite

APA Özen Erdoğan, F., & Dayıoğlu, A. (2018). Projective Graphs Obtained from Projective Planes. Adıyaman University Journal of Science, 8(2), 115-128.
AMA Özen Erdoğan F, Dayıoğlu A. Projective Graphs Obtained from Projective Planes. ADYU J SCI. December 2018;8(2):115-128.
Chicago Özen Erdoğan, Fatma, and Abdurrahman Dayıoğlu. “Projective Graphs Obtained from Projective Planes”. Adıyaman University Journal of Science 8, no. 2 (December 2018): 115-28.
EndNote Özen Erdoğan F, Dayıoğlu A (December 1, 2018) Projective Graphs Obtained from Projective Planes. Adıyaman University Journal of Science 8 2 115–128.
IEEE F. Özen Erdoğan and A. Dayıoğlu, “Projective Graphs Obtained from Projective Planes”, ADYU J SCI, vol. 8, no. 2, pp. 115–128, 2018.
ISNAD Özen Erdoğan, Fatma - Dayıoğlu, Abdurrahman. “Projective Graphs Obtained from Projective Planes”. Adıyaman University Journal of Science 8/2 (December 2018), 115-128.
JAMA Özen Erdoğan F, Dayıoğlu A. Projective Graphs Obtained from Projective Planes. ADYU J SCI. 2018;8:115–128.
MLA Özen Erdoğan, Fatma and Abdurrahman Dayıoğlu. “Projective Graphs Obtained from Projective Planes”. Adıyaman University Journal of Science, vol. 8, no. 2, 2018, pp. 115-28.
Vancouver Özen Erdoğan F, Dayıoğlu A. Projective Graphs Obtained from Projective Planes. ADYU J SCI. 2018;8(2):115-28.

...