Experimental and Modeling Investigation of Mass Transfer during Infrared Drying of Kumquat Slices
Year 2019,
Volume: 9 Issue: 1, 48 - 65, 28.06.2019
İlknur Küçük
,
İbrahim Doymaz
Abstract
In this work, mass transfer of kumquat slices was investigated during infrared drying. The effect of the infrared radiation power (50-88 W) on the drying characteristics of the Kumquat slices was evaluated as the drying parameter. It was determined that the infrared power affected the drying and colour characteristics of kumquat slices and drying time decreased with increased infrared power. Five different mathematical models were evaluated for moisture ratios using nonlinear regression analysis. The results of regression analysis indicated that the Midilli & Kucuk model is the best model to describe the drying behaviour with the lowest RMSE values and highest R2 value. The effective moisture diffusivity at each infrared power was determined by Fick’s second law of diffusion, an increase in the power led to increase in the effective moisture diffusivity between 8.31× 10−9 and 1.89 × 10−8 m2/s. The dependence of effective moisture diffusivity on infrared power was expressed by a modified Arrhenius type equation. Activation energy was estimated by a modified Arrhenius type equation as 1.92 kW/kg. A positive effect was observed on the ΔE with increasing in infrared power and with rising in infrared radiation power it was decreased. Whereas, it was observed that the chroma values increased with rising in infrared radiation power.
References
- [1] Lou, S. N, Lai Y. C., Huang J. D., Ho, C. T., Ferng L. A, Chang Y. C., Drying effect on flavonoid composition and antioxidant activity of immature kumquat, Food Chemistry 171, 356–363, 2015
- [2] Rodrigues, S., Silva, E. O., Brito E., Exotic Fruits, Academic Press, Elsevier, London, 2018.
- [3] Loy, S. N., Ho, C. T., Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin, Journal of Food and Drug Analysis, 25, 162-175, 2017.
- [4] Torki-Harchegani, M., Ghanbarian, D., Pirbalouti, A.G., Sadeghi, M, Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments, Renewable and Sustainable Energy Reviews, 58, 407–418, 2016.
- [5] Touil, A., Chemkhi, A., and Zagrouba, F. (2014). Moisture diffusivity and shrinkage of fruit and Cladode of Opuntia ficus-indica during infrared drying, Journal of Food Processing, V(2014), 1-9, 2014.
- [6] Ertekin, C., and Heybeli, N., Thin-layer infrared drying of mint leaves, Journal of Food Processing and Preservation, 38, 1480-1490, 2014.
- [7] Alaei, B., Chayjan, R.A., Modeling of Nectarine drying under near infrared-vacuum conditions, Acta Sci. Pol. Technol. Aliment., 14(1), 15-27, 2015.
- [8] Doymaz, I., Infrared drying chracteristics of bean seeds, Journal of Food Processing and Preservation, 39, 933-939, 2015.
- [9] El-Beltagy A, Gamea GR, Essa, A.H.A., Solar drying characteristics of strawberry, Journal of Food Engineering, 78, 456–464, 2007.
- [10] Erbay, Z., Icier, F., Thin-layer drying behaviours of olive leaves (Olea Europaea L.), Journal of Food Process Engineering, 33, 287-308, 2010.
- [11] Afolabi, T.J., Tunde-Akintunde, T.Y., Adeyanju, J.A., Mathematical modeling of drying kinetics of untreated and pretreated cocoyam slices, Journal of Food Science and Technology, 52, 2731-2740, 2015.
- [12] Falade, K.O., Ogunwolu, O.S, Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices, Journal of Food Processing and Preservation, 38, 373-388, 2014.
- [13] Midilli, A., Kucuk, H., Mathematical modeling of thin layer drying of pistachio by using solar energy, Energy Conversion and Management, 44, 1111-1122, 2003.
- [14] Chayjan, R.A., Salari, K., Abedi, Q., and Sabziparvar, A.A., Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying, Journal of Food Science and Technology, 50, 667-677, 2013.
- [15] Crank, J., The Mathematics of Diffusion, Oxford University Press, London, 1975.
- [16] Darvishi, H., Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean, Brazilian Journal of Chemical Engineering, 34, 143-158, 2017.
- [17] Saghazi, A.A., Yousefi, A.R., Salari, A., Mathematical modeling of the kinetics of thin-layer infrared drying of lemon, Jordan Journal of Agricultural Science, 13, 663-674, 2017.
- [18] Nasiroglu, S., Kocabiyik, H., Thin-layer infrared radiation drying of red pepper slices, Journal of Food Process Engineering, 32, 1-16, 2009.
- [19] Sarimeseli, A., Yuceer, M., Investigation of infrared drying behaviour of spinach leaves using ANN methodology and dried product quality, Chemical and Process Engineering, 36, 425-436, 2015.
- [20] Singh, B., Panesar, P.S., and Nanda, V., Utilization of carrot pomace for the preparation of a value added product, World Journal of Dairy and Food Science, 1, 22-27, 2006.
- [21] Vega-Gálvez, A., Miranda, M., Díaz, L.P., Lopez, L., Rodriguez, K., Di Scala, K., Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake, Bioresource Technology, 101, 7265-7270, 2010.
- [22] Abano, E.E., Ma, H.L., Qu, W., Thin-layer catalytic far-infrared radiation flavour of tomato slices, Journal of Agricultural Engineering., 45, 37-45, 2014.
- [23] Shi J., Pan Z., Mchugh T.H., Wood D., Hirschberg E., Olson D., Drying and quality characteristics of fresh and sugar-infused blueberries dries with infrared radiation heating, LWT Food Science and Technology, 41, 1962–1972, 2008.
- [24] Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D., Moisture diffusivity data compilation in foodstuffs, Drying Technology, 14, 2225-2253, 1996.
- [25] Ju, H.Y.,El-Mashad, H.M., Fang, X.M., Pan, Z., Xiao, H.W., Liu, Y.H., Gao, Z.J. Drying characteristics and modeling of yam slices under different relative humidity conditions, Drying Technology, 34, 296-306, 2016.
- [26] Vega-Galvez A, Scala K.D, Rodriguez K., Lemus-Mondaca R., Miranda M, Lopez J., Perez-Won M., Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, color and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian), Food Chemistry 117(4), 647–653, 2009.
Kızılötesi Kurutma Sırasında Kumkuat Dilimlerinin Kütle Transferinin Deneysel ve Modelleme İncelemesi
Year 2019,
Volume: 9 Issue: 1, 48 - 65, 28.06.2019
İlknur Küçük
,
İbrahim Doymaz
Abstract
Bu
çalışmada, kızılötesi kurutma sırasında kumkuat dilimlerinin kütle transferi
araştırılmıştır. Kurutma parametresi olarak kızılötesi radyasyon gücünün (50-88
W) kumkuat dilimlerinin kurutma karakteristiği üzerindeki etkisi
değerlendirilmiştir. Kızılötesi gücün, kumkuat dilimlerinin kurumasını ve renk
özelliklerini etkilediği ve kuruma süresinin artan kızılötesi güç ile azaldığı
belirlenmiştir. Doğrusal olmayan regresyon analizi kullanılarak beş farklı
matematiksel model nem oranları için değerlendirilmiştir. Regresyon analiz
sonuçları Midilli & Kucuk modelinin en düşük c2 ve RMSE değerleri ve en yüksek R2 değerleri ile kurutma
davranışını tanımlayan en iyi model olduğunu göstermiştir. Her bir kızılötesi
güçteki efektif nem difüzyonu, Fick’in ikinci difüzyon yasası ile
belirlenmiştir, güçteki artış efektif nem difüzyonunda 8.31×10−9 ve
1.89 10−8 m2/s arasında artışa yol açmıştır. Efektif nem
difüzyonun kızılötesi güçe bağımlılığı modifiye bir Arrhenius tipi denklem ile
ifade edilmiştir. Aktivasyon enerjisi modifiye Arrhenius tipi denklem ile 1.92
kW/kg olarak hesaplanmıştır. Kızılötesi güçteki artma ile ΔE'de pozitif bir
etki gözlemlenmiş ve kızılötesi radyasyon gücündeki yükselme ile bu etki
azalmıştır. Bununla birlikte kızılötesi radyasyon gücündeki yükselmenin chroma
değerlerini artırdığı gözlenmiştir.
References
- [1] Lou, S. N, Lai Y. C., Huang J. D., Ho, C. T., Ferng L. A, Chang Y. C., Drying effect on flavonoid composition and antioxidant activity of immature kumquat, Food Chemistry 171, 356–363, 2015
- [2] Rodrigues, S., Silva, E. O., Brito E., Exotic Fruits, Academic Press, Elsevier, London, 2018.
- [3] Loy, S. N., Ho, C. T., Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin, Journal of Food and Drug Analysis, 25, 162-175, 2017.
- [4] Torki-Harchegani, M., Ghanbarian, D., Pirbalouti, A.G., Sadeghi, M, Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments, Renewable and Sustainable Energy Reviews, 58, 407–418, 2016.
- [5] Touil, A., Chemkhi, A., and Zagrouba, F. (2014). Moisture diffusivity and shrinkage of fruit and Cladode of Opuntia ficus-indica during infrared drying, Journal of Food Processing, V(2014), 1-9, 2014.
- [6] Ertekin, C., and Heybeli, N., Thin-layer infrared drying of mint leaves, Journal of Food Processing and Preservation, 38, 1480-1490, 2014.
- [7] Alaei, B., Chayjan, R.A., Modeling of Nectarine drying under near infrared-vacuum conditions, Acta Sci. Pol. Technol. Aliment., 14(1), 15-27, 2015.
- [8] Doymaz, I., Infrared drying chracteristics of bean seeds, Journal of Food Processing and Preservation, 39, 933-939, 2015.
- [9] El-Beltagy A, Gamea GR, Essa, A.H.A., Solar drying characteristics of strawberry, Journal of Food Engineering, 78, 456–464, 2007.
- [10] Erbay, Z., Icier, F., Thin-layer drying behaviours of olive leaves (Olea Europaea L.), Journal of Food Process Engineering, 33, 287-308, 2010.
- [11] Afolabi, T.J., Tunde-Akintunde, T.Y., Adeyanju, J.A., Mathematical modeling of drying kinetics of untreated and pretreated cocoyam slices, Journal of Food Science and Technology, 52, 2731-2740, 2015.
- [12] Falade, K.O., Ogunwolu, O.S, Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices, Journal of Food Processing and Preservation, 38, 373-388, 2014.
- [13] Midilli, A., Kucuk, H., Mathematical modeling of thin layer drying of pistachio by using solar energy, Energy Conversion and Management, 44, 1111-1122, 2003.
- [14] Chayjan, R.A., Salari, K., Abedi, Q., and Sabziparvar, A.A., Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying, Journal of Food Science and Technology, 50, 667-677, 2013.
- [15] Crank, J., The Mathematics of Diffusion, Oxford University Press, London, 1975.
- [16] Darvishi, H., Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean, Brazilian Journal of Chemical Engineering, 34, 143-158, 2017.
- [17] Saghazi, A.A., Yousefi, A.R., Salari, A., Mathematical modeling of the kinetics of thin-layer infrared drying of lemon, Jordan Journal of Agricultural Science, 13, 663-674, 2017.
- [18] Nasiroglu, S., Kocabiyik, H., Thin-layer infrared radiation drying of red pepper slices, Journal of Food Process Engineering, 32, 1-16, 2009.
- [19] Sarimeseli, A., Yuceer, M., Investigation of infrared drying behaviour of spinach leaves using ANN methodology and dried product quality, Chemical and Process Engineering, 36, 425-436, 2015.
- [20] Singh, B., Panesar, P.S., and Nanda, V., Utilization of carrot pomace for the preparation of a value added product, World Journal of Dairy and Food Science, 1, 22-27, 2006.
- [21] Vega-Gálvez, A., Miranda, M., Díaz, L.P., Lopez, L., Rodriguez, K., Di Scala, K., Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake, Bioresource Technology, 101, 7265-7270, 2010.
- [22] Abano, E.E., Ma, H.L., Qu, W., Thin-layer catalytic far-infrared radiation flavour of tomato slices, Journal of Agricultural Engineering., 45, 37-45, 2014.
- [23] Shi J., Pan Z., Mchugh T.H., Wood D., Hirschberg E., Olson D., Drying and quality characteristics of fresh and sugar-infused blueberries dries with infrared radiation heating, LWT Food Science and Technology, 41, 1962–1972, 2008.
- [24] Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D., Moisture diffusivity data compilation in foodstuffs, Drying Technology, 14, 2225-2253, 1996.
- [25] Ju, H.Y.,El-Mashad, H.M., Fang, X.M., Pan, Z., Xiao, H.W., Liu, Y.H., Gao, Z.J. Drying characteristics and modeling of yam slices under different relative humidity conditions, Drying Technology, 34, 296-306, 2016.
- [26] Vega-Galvez A, Scala K.D, Rodriguez K., Lemus-Mondaca R., Miranda M, Lopez J., Perez-Won M., Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, color and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian), Food Chemistry 117(4), 647–653, 2009.