Research Article
BibTex RIS Cite

BARAJ PROTOTİPLERİNDE DOLUSAVAK SU JETİ ENERJİ SÖNÜMLEME YÖNTEMİ

Year 2022, , 105 - 116, 14.04.2022
https://doi.org/10.54365/adyumbd.1022031

Abstract

Bu çalısma sıçratma eşiği, çökeltim havuzu ve düşü havuzu gibi önemli baraj bileşenleri alanında araştırmalar yapan bilim insanları ve tasarım çalışmaları yürüten mühendisler için dolusavaktan çıkan su jetindeki hava direnci yoluyla oluşan enerji sönümlemesi miktarının kolaylıkla hesaplanmasını sağlayacak özgün bir ampirik denklem sunulmaktadır. Bu denklem, gerçek boyutlarda baraj prototipi üzerinde uygulanan deneysel, ampirik ve nümerik hesaplamaların dikkate alınarak karşılaştırılması ile elde edilmistir. Çalışmada verilen bu denklem ile, su jeti üzerinde hava direncinden kaynaklanan enerji sönümlemesini 10000 m3/s deşarj değerine kadar hesaplamak mümkündür.

References

  • Dargahi B. Scour development downstream of a spillway. Journal of Hydraulic Research 2003; 41(4):417-426. DOI: 10.1080/00221680309499986.
  • Tsen-Ding C. On the Energy Dissipation of High Overflow Dam with Flip Bucket and Estimation of Downstream Local Erosion. Journal of Hydraulic Engineering 1963; 2:135-148.
  • Laursen EM. An analysis of relief bridge scour. Journal of the Hydraulics Division 1963; 89(3): 93-118.
  • Melville BW. Local scour at bridge sites. Doctoral dissertation, The University of Auckland, New Zealand 1975; 120-143.
  • Raudkivi AJ, Ettema R. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering 1983; 109(3):338-350. DOI: 10.1061/(ASCE)0733-9429(1983)109:3(338).
  • Mason PJ, Arumugam K. Free jet scour below dams and flip buckets. Journal of Hydraulic Engineering 1985; 111(2):220-235. DOI: 10.1061/(ASCE)0733-9429(1985)111:2(220).
  • Movahedi A, Kavianpour MR, Yamini OA. Evaluation and modeling scouring and sedimentation around downstream of large dams. Environmental Earth Sciences 2018; 77(8):320. DOI: 10.1007/s12665-018-7487-2.
  • Al-Husseini TR, Al-Madhhachi AST, Naser ZA. Laboratory experiments and numerical model of local scour around submerged sharp crested weirs. Journal of King Saud University-Engineering Sciences 2020; 32(3):167-176. DOI: 10.1016/j.jksues.2019.01.001.
  • Azmathullah HM, Deo MC, Bhajantri MR, Deolalikar PB. Scour at the base of flip-bucket spillways. ISH Journal of Hydraulic Engineering 2004; 10(2):121-129. DOI: 10.1080/09715010.2004.10514759.
  • Wu JH, Li SF, Ma F. Energy dissipation of slot-type flip buckets. Journal of Hydrodynamics 2018; 30(2):365-368. DOI: 10.1007/s42241-018-0022-9.
  • Khalifehei K, Sadeghi-Askari M, Azamathullah H. Experimental investigation of energy dissipation on flip buckets with triangular deflectors. ISH Journal of Hydraulic Engineering 2020; 1-7. DOI: 10.1080/09715010.2020.1775716.
  • Junrui D, Jitang H, Yichun X, Yongxiang L. Study on the scour of the rocked by plunging jet downstream of the Three Gorges spillway. Journal of Yangtze River Scientific Research Institute 1991; 8(2):10-21.
  • Azmathullah HM, Deo MC, Deolalikar PB. Estimation of scour below spillways using neural networks. Journal of Hydraulic Research 2006; 44(1):61-69. DOI: 10.1080/00221686.2006.9521661.
  • Khatsuria RM. Hydraulics of Spillways and Energy Dissipators. CRC Press, Taylor & Francis Group, NW 2005; 49-65. ISBN: 0-8247-5789-0
  • Fraser CN. Ski-jump energy dissipation: design of a ski-jump to maximise energy dissipation and aeration. Doctoral dissertation, Stellenbosch University, South Africa 2016; 126-135.
  • Qian S, Wu J, Ma F. Hydraulic performance of ski-jump-step energy dissipater. Journal of Hydraulic Engineering 2016; 142(10):05016004. DOI: 10.1061/(ASCE)HY.1943-7900.0001178
  • Moghadam K, Amini M, Malek A, Mohammad MA, Hoseini H. Physical modeling of ski-jump spillway to evaluate dynamic pressure. Water 2019; 11(8):1687. DOI: 10.3390/w11081687
  • Lauria A, Alfonsi G. Numerical investigation of ski-jump hydraulics. Journal of Hydraulic Engineering 2020; 146(4):04020012. DOI: 10.1061/(ASCE)HY.1943-7900.0001718
  • Yavuz C. Effect of Water Cushion on Dynamic Pressures at Impingement Area. Gazi University Journal of Science 2021; 34:45-52. DOI: 10.35378/gujs.657473
  • Aydin I, Göğüş M, Altan-Sakarya AB, Köken M. Laleli Dam and HEPP Spillway Hydraulic Model Studies. Hydromechanics Laboratory, Civil Engineering Department, DSIM Projects, METU, (2012).
  • Zwart SD. Scale modelling in engineering: Froude's case, Philosophy of technology and engineering sciences. North-Holland, 2009; 759-798. DOI: 10.1016/B978-0-444-51667-1.50032-X
  • https://www.flow3d.com/wp-content/uploads/2019/03/FLOW-3D-v12-0-Install-Instructions.pdf Access date: 10.11.2021
  • Rehbock T. Discussion of Precise Measurements. ASCE 1929; 93:1143-1162.
  • Kawakami K. A study on the computation of horizontal distance of jet issued from ski-jump spillway. In Proceedings of the Japan Society of Civil Engineers 1973; 219:37-44.
  • Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974; 3(2):269-289. DOI: 10.1016/B978-0-08-030937-8.50016-7
  • Wilcox DC. Turbulence modelling for CFD. Journal of Fluid Mechanics 1995; 289:406-407. DOI: 10.1017/S0022112095211388
  • Speziale CG. Analytical methods for the development of Reynolds-stress closures in turbulence. Annual Review of Fluid Mechanics 1991; 23:107-157.
  • Zhang N, Chato DJ, McQuillen JB, Motil BJ, Chao DF. CFD simulation of pressure drops in liquid acquisition device channel with sub-cooled oxygen. World Academy of Science, Engineering and Technology 2012; 58:1180-1185. DOI: 10.1016/j.ijhydene.2014.01.035

ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES

Year 2022, , 105 - 116, 14.04.2022
https://doi.org/10.54365/adyumbd.1022031

Abstract

This study offers a novel empirical equation for those involved in ski-jump type energy dissipator, stilling basin, and plunge pool designs to determine the energy dissipation level due to air resistance. The equation verified by conducting experimental, empirical, and numerical regression analyses at the prototype scale. Energy dissipation due to air resistance can then be easily calculated for the discharges reaching up to 10000 m3/s by using the equation.

References

  • Dargahi B. Scour development downstream of a spillway. Journal of Hydraulic Research 2003; 41(4):417-426. DOI: 10.1080/00221680309499986.
  • Tsen-Ding C. On the Energy Dissipation of High Overflow Dam with Flip Bucket and Estimation of Downstream Local Erosion. Journal of Hydraulic Engineering 1963; 2:135-148.
  • Laursen EM. An analysis of relief bridge scour. Journal of the Hydraulics Division 1963; 89(3): 93-118.
  • Melville BW. Local scour at bridge sites. Doctoral dissertation, The University of Auckland, New Zealand 1975; 120-143.
  • Raudkivi AJ, Ettema R. Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering 1983; 109(3):338-350. DOI: 10.1061/(ASCE)0733-9429(1983)109:3(338).
  • Mason PJ, Arumugam K. Free jet scour below dams and flip buckets. Journal of Hydraulic Engineering 1985; 111(2):220-235. DOI: 10.1061/(ASCE)0733-9429(1985)111:2(220).
  • Movahedi A, Kavianpour MR, Yamini OA. Evaluation and modeling scouring and sedimentation around downstream of large dams. Environmental Earth Sciences 2018; 77(8):320. DOI: 10.1007/s12665-018-7487-2.
  • Al-Husseini TR, Al-Madhhachi AST, Naser ZA. Laboratory experiments and numerical model of local scour around submerged sharp crested weirs. Journal of King Saud University-Engineering Sciences 2020; 32(3):167-176. DOI: 10.1016/j.jksues.2019.01.001.
  • Azmathullah HM, Deo MC, Bhajantri MR, Deolalikar PB. Scour at the base of flip-bucket spillways. ISH Journal of Hydraulic Engineering 2004; 10(2):121-129. DOI: 10.1080/09715010.2004.10514759.
  • Wu JH, Li SF, Ma F. Energy dissipation of slot-type flip buckets. Journal of Hydrodynamics 2018; 30(2):365-368. DOI: 10.1007/s42241-018-0022-9.
  • Khalifehei K, Sadeghi-Askari M, Azamathullah H. Experimental investigation of energy dissipation on flip buckets with triangular deflectors. ISH Journal of Hydraulic Engineering 2020; 1-7. DOI: 10.1080/09715010.2020.1775716.
  • Junrui D, Jitang H, Yichun X, Yongxiang L. Study on the scour of the rocked by plunging jet downstream of the Three Gorges spillway. Journal of Yangtze River Scientific Research Institute 1991; 8(2):10-21.
  • Azmathullah HM, Deo MC, Deolalikar PB. Estimation of scour below spillways using neural networks. Journal of Hydraulic Research 2006; 44(1):61-69. DOI: 10.1080/00221686.2006.9521661.
  • Khatsuria RM. Hydraulics of Spillways and Energy Dissipators. CRC Press, Taylor & Francis Group, NW 2005; 49-65. ISBN: 0-8247-5789-0
  • Fraser CN. Ski-jump energy dissipation: design of a ski-jump to maximise energy dissipation and aeration. Doctoral dissertation, Stellenbosch University, South Africa 2016; 126-135.
  • Qian S, Wu J, Ma F. Hydraulic performance of ski-jump-step energy dissipater. Journal of Hydraulic Engineering 2016; 142(10):05016004. DOI: 10.1061/(ASCE)HY.1943-7900.0001178
  • Moghadam K, Amini M, Malek A, Mohammad MA, Hoseini H. Physical modeling of ski-jump spillway to evaluate dynamic pressure. Water 2019; 11(8):1687. DOI: 10.3390/w11081687
  • Lauria A, Alfonsi G. Numerical investigation of ski-jump hydraulics. Journal of Hydraulic Engineering 2020; 146(4):04020012. DOI: 10.1061/(ASCE)HY.1943-7900.0001718
  • Yavuz C. Effect of Water Cushion on Dynamic Pressures at Impingement Area. Gazi University Journal of Science 2021; 34:45-52. DOI: 10.35378/gujs.657473
  • Aydin I, Göğüş M, Altan-Sakarya AB, Köken M. Laleli Dam and HEPP Spillway Hydraulic Model Studies. Hydromechanics Laboratory, Civil Engineering Department, DSIM Projects, METU, (2012).
  • Zwart SD. Scale modelling in engineering: Froude's case, Philosophy of technology and engineering sciences. North-Holland, 2009; 759-798. DOI: 10.1016/B978-0-444-51667-1.50032-X
  • https://www.flow3d.com/wp-content/uploads/2019/03/FLOW-3D-v12-0-Install-Instructions.pdf Access date: 10.11.2021
  • Rehbock T. Discussion of Precise Measurements. ASCE 1929; 93:1143-1162.
  • Kawakami K. A study on the computation of horizontal distance of jet issued from ski-jump spillway. In Proceedings of the Japan Society of Civil Engineers 1973; 219:37-44.
  • Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974; 3(2):269-289. DOI: 10.1016/B978-0-08-030937-8.50016-7
  • Wilcox DC. Turbulence modelling for CFD. Journal of Fluid Mechanics 1995; 289:406-407. DOI: 10.1017/S0022112095211388
  • Speziale CG. Analytical methods for the development of Reynolds-stress closures in turbulence. Annual Review of Fluid Mechanics 1991; 23:107-157.
  • Zhang N, Chato DJ, McQuillen JB, Motil BJ, Chao DF. CFD simulation of pressure drops in liquid acquisition device channel with sub-cooled oxygen. World Academy of Science, Engineering and Technology 2012; 58:1180-1185. DOI: 10.1016/j.ijhydene.2014.01.035
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Cüneyt Yavuz 0000-0001-9767-7234

Publication Date April 14, 2022
Submission Date November 11, 2021
Published in Issue Year 2022

Cite

APA Yavuz, C. (2022). ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(16), 105-116. https://doi.org/10.54365/adyumbd.1022031
AMA Yavuz C. ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. April 2022;9(16):105-116. doi:10.54365/adyumbd.1022031
Chicago Yavuz, Cüneyt. “ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 16 (April 2022): 105-16. https://doi.org/10.54365/adyumbd.1022031.
EndNote Yavuz C (April 1, 2022) ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9 16 105–116.
IEEE C. Yavuz, “ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 16, pp. 105–116, 2022, doi: 10.54365/adyumbd.1022031.
ISNAD Yavuz, Cüneyt. “ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9/16 (April 2022), 105-116. https://doi.org/10.54365/adyumbd.1022031.
JAMA Yavuz C. ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9:105–116.
MLA Yavuz, Cüneyt. “ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 16, 2022, pp. 105-16, doi:10.54365/adyumbd.1022031.
Vancouver Yavuz C. ENERGY DISSIPATION SCALE FOR DAM PROTOTYPES. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9(16):105-16.