INVESTIGATION OF LIQUEFACTION POTENTIAL UTILIZING NONLINEAR SEISMIC SITE RESPONSE OF THE PROJECT AREA LOCATED IN YALOVA PROVINCE SÜLEYMANBEY DISTRICT
Year 2022,
, 319 - 332, 31.08.2022
Merve Güneş
,
Arda Burak Ekmen
Abstract
The occurrence of significant liquefaction-induced damage in structures due to earthquakes has increased the importance of liquefaction analyses over time and has enabled computer-aided analyses to be used more frequently. This study evaluated the liquefaction potential for the project area located in the Süleymanbey District of Yalova Province considering the seismic field response. Seismic field response analyses were carried out in the Deepsoil software using real earthquake scenarios. Peak ground acceleration values were obtained by utilizing the nonlinear analysis method using Çanakkale Ayvacık, Afyonkarahisar Çobanlar, Aegean Sea İzmir Seferihisar Offshore, Düzce (Bolu) and Kocaeli Earthquake data with Mw=5.3, 5.8, 6.6, 7.1 and 7.6 magnitudes, respectively. Using the data obtained from earthquake scenarios in the relevant project area as an input enabled the analyses to be carried out realistically. Liquefaction analyses were performed for each earthquake magnitude utilizing the nine different methods in the Novoliq software and simplified theoretical method; then, the results were compared. While the liquefaction potential in the project area for earthquakes with a magnitude of Mw=5.3, 5.8, and 6.6 varies, liquefaction risk was observed throughout the area in earthquakes with a magnitude of Mw=7.1 and Mw=7.6.
References
- Akkaş Ü. Sıvılaşma potansiyelinin ve etkilerinin azaltılması. Yüksek lisans tezi. Sakarya: Sakarya Üniversitesi; 2006.
- Çetin KÖ, Unutmaz, B. Zemin sıvılaşması ve sismik zemin davranışı. Türkiye Mühendislik Haberleri 2004; 430(2), 32-37.
- Özaydın K. Zeminlerde Sıvılaşma. 6. Ulusal Deprem Mühendisliği Konferansı, İstanbul, 2007.
- Aytaş Z. Zemin sıvılaşmasına zemin ve deprem parametrelerinin etkisinin değerlendirilmesi. Yüksek lisans tezi. Batman: Batman Üniversitesi; 2019.
- Şengül T, Karabaş B. Kütahya merkez ilçesinde sıvılaşma potansiyelinin coğrafi bilgi sistemi ile incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 2021; 8(2), 817-825.
- Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D. DeepSoil, Version 7.0, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign, 2020.
- Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971; 97(9): 1249-1273.
- Novotech, 2020. NOVOLIQ (2020), Version 4.0.2020.905, User Manual.
- SAFİR JEOTEKNİK MÜH. SOND. MAD. İNŞ. SAN. VE TİC. LTD. ŞTİ, Zemin Etüt Raporu.
- Youd TL, Gilstrap SD. 1999. Liquefaction and Deformation of Silty and Fine-Grained Soils. 2nd-3rd Earthquake Geotechnical Engineering, Balkema, Rotterdam, 1013-1020, 1999.
- Youd TL, Idriss IM. Proceeeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. State University of New York at Buffalo, National Center for Earthquake Engineering Research, 1997, Report No: NCEER-97-0022.
- Boulanger RW, Idriss IM. CPT and SPT based liquefaction triggering procedures. Center for Geotechnical Modeling, University of California at Davis, 2014, Report No: UCD/CGM-14 (1).
- Anderson DL, Byrne PM, Devall RH, Naesgaard E, Wijewickreme D, Adebar P, Yan L. Geotechnical Design Guidelines For Buildings on Liquefiable Sites in Accordance With Nbc 2005 for Greater Vancouver Region. Greater Vancouver Liquefaction Task Force Report, University of British Columbia; 2007.
- Chinese Code. Code for Seismic Design of Buildings-GB 50011-2010. National Standard of the People's Republic of China, China Architecture and Building Press, Beijing; 2010.
- Seed HB, Idriss IM, Arango I. Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, ASCE, 1983; 109(3): 458-482.
- Japan Road Association. Design Specifications for Highway Bridges. Part V, Seismic Design, Tokyo:Maruzen, Japanese; 2002.
- Tokimatsu K, Yoshimi Y. Empirical correlation of soil liquefaction based on SPT n-value and fines content. Soil and Foundations 1983; 23(4): 56-74.
- Shibata T. Relations Between N-Value and Liquefaction Potential of Sand Deposits. In Proc, 16th Annual Convention of Japanese Society of Soil Mechanics and Foundation Engineering, p.621-624, Tokio, 1981.
- Kokusho T, Yoshida Y, Esashi Y. A study on a seismic stability of dense sand (part 2)-evaluation method based on SPT n-value. Technical Report of Central Research Institute of Electric Power, 1983; Research Report No: 383026, Japanese, p.1-32.
- Skempton AW. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation. Geotechnique 1986; 36(3): 425-447.
- Liao SSC, Whitman RV. Overbuden correction factor for SPT in sand. Journal of Geotechnical Engineering, ASCE 1986;112(3): 373-377.
- Kayen RE, Mitchell JK, Seed RB, Lodge AL, Nishio S, Couinho R. Evaluation of SPT, CPT, and Shear Waze Based Methods for Liquefaction Potential Assessment Using Lome Prieta Data. Proceedings, 4 th Japan-US Workshop on Earthquake Resistant Design of Life Line Facilities and Countermasures for Soil Liquefaction, 1992; 1: 177 – 204.
- Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE 1985; 111(12):1425-1445.
- Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder JrLF,Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, IIIMartin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001; 127(10): 817-833.
- AFAD, 2021. Afet ve Acil Durum Yönetimi Başkanlığı. Deprem Dairesi Başkanlığı, Türkiye İvme Veri Tabanı ve Analiz Sistemi.
YALOVA İLİ SÜLEYMANBEY MAHALLESİNDE BULUNAN PROJE ALANININ NONLİNEER SİSMİK SAHA TEPKİSİ KULLANILARAK SIVILAŞMA POTANSİYELİNİN İNCELENMESİ
Year 2022,
, 319 - 332, 31.08.2022
Merve Güneş
,
Arda Burak Ekmen
Abstract
Meydana gelen depremler sonucunda yapılarda sıvılaşma kaynaklı büyük hasarların oluşması, sıvılaşma analizlerinin önemini zamanla arttırmış ve bilgisayar destekli analizlerin daha sık kullanılmasına olanak sağlamıştır. Bu çalışmada, Yalova İli Süleymanbey Mahallesinde yer alan proje alanı için sismik saha tepkisi dikkate alınarak sıvılaşma potansiyeli değerlendirilmiştir. Sismik saha tepki analizleri gerçek deprem senaryoları kullanılarak Deepsoil programında yürütülmüştür. Sırasıyla Mw=5.3, 5.8, 6.6, 7.1 ve 7.6 büyüklüğündeki Çanakkale Ayvacık, Afyonkarahisar Çobanlar, Ege Denizi İzmir Seferihisar Açıkları, Düzce (Bolu) ve Kocaeli Deprem verileri kullanılarak nonlineer analiz yöntemiyle maksimum yer ivmesi değerlerine ulaşılmıştır. Söz konusu deprem senaryolarının ilgili proje alanına uygulanmasıyla elde edilen verilerin sıvılaşma analizlerinde bir girdi olarak kullanılması, analizlerin gerçek duruma yakın bir biçimde yürütülmesini sağlamıştır. Her bir deprem büyüklüğü için Novoliq programında yer alan 9 farklı metot ve sadeleştirilmiş teorik yöntem kullanılarak sıvılaşma analizleri gerçekleştirilmiş olup elde edilen sonuçlar birbirleriyle karşılaştırılmıştır. Proje alanında Mw=5.3, 5.8 ve 6.6 büyüklüğündeki depremler için sıvılaşma potansiyeli değişkenlik gösterirken Mw=7.1 ile Mw=7.6 büyüklüğündeki depremlerde alanın tamamında sıvılaşma riski gözlemlenmiştir.
Supporting Institution
Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Thanks
Bu çalışma kapsamında yürütülen analizlere, 21019 nolu yüksek lisans tezi bilimsel araştırma projesi aracılığıyla destek sağlayan Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne ve proje alanına ait verilerin kullanım iznini sağlayan Safir Jeoteknik Mühendislik Son. Mad. İnş. San. ve Tic. Ltd. firmasına teşekkür ederiz.
References
- Akkaş Ü. Sıvılaşma potansiyelinin ve etkilerinin azaltılması. Yüksek lisans tezi. Sakarya: Sakarya Üniversitesi; 2006.
- Çetin KÖ, Unutmaz, B. Zemin sıvılaşması ve sismik zemin davranışı. Türkiye Mühendislik Haberleri 2004; 430(2), 32-37.
- Özaydın K. Zeminlerde Sıvılaşma. 6. Ulusal Deprem Mühendisliği Konferansı, İstanbul, 2007.
- Aytaş Z. Zemin sıvılaşmasına zemin ve deprem parametrelerinin etkisinin değerlendirilmesi. Yüksek lisans tezi. Batman: Batman Üniversitesi; 2019.
- Şengül T, Karabaş B. Kütahya merkez ilçesinde sıvılaşma potansiyelinin coğrafi bilgi sistemi ile incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 2021; 8(2), 817-825.
- Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D. DeepSoil, Version 7.0, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign, 2020.
- Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971; 97(9): 1249-1273.
- Novotech, 2020. NOVOLIQ (2020), Version 4.0.2020.905, User Manual.
- SAFİR JEOTEKNİK MÜH. SOND. MAD. İNŞ. SAN. VE TİC. LTD. ŞTİ, Zemin Etüt Raporu.
- Youd TL, Gilstrap SD. 1999. Liquefaction and Deformation of Silty and Fine-Grained Soils. 2nd-3rd Earthquake Geotechnical Engineering, Balkema, Rotterdam, 1013-1020, 1999.
- Youd TL, Idriss IM. Proceeeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. State University of New York at Buffalo, National Center for Earthquake Engineering Research, 1997, Report No: NCEER-97-0022.
- Boulanger RW, Idriss IM. CPT and SPT based liquefaction triggering procedures. Center for Geotechnical Modeling, University of California at Davis, 2014, Report No: UCD/CGM-14 (1).
- Anderson DL, Byrne PM, Devall RH, Naesgaard E, Wijewickreme D, Adebar P, Yan L. Geotechnical Design Guidelines For Buildings on Liquefiable Sites in Accordance With Nbc 2005 for Greater Vancouver Region. Greater Vancouver Liquefaction Task Force Report, University of British Columbia; 2007.
- Chinese Code. Code for Seismic Design of Buildings-GB 50011-2010. National Standard of the People's Republic of China, China Architecture and Building Press, Beijing; 2010.
- Seed HB, Idriss IM, Arango I. Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, ASCE, 1983; 109(3): 458-482.
- Japan Road Association. Design Specifications for Highway Bridges. Part V, Seismic Design, Tokyo:Maruzen, Japanese; 2002.
- Tokimatsu K, Yoshimi Y. Empirical correlation of soil liquefaction based on SPT n-value and fines content. Soil and Foundations 1983; 23(4): 56-74.
- Shibata T. Relations Between N-Value and Liquefaction Potential of Sand Deposits. In Proc, 16th Annual Convention of Japanese Society of Soil Mechanics and Foundation Engineering, p.621-624, Tokio, 1981.
- Kokusho T, Yoshida Y, Esashi Y. A study on a seismic stability of dense sand (part 2)-evaluation method based on SPT n-value. Technical Report of Central Research Institute of Electric Power, 1983; Research Report No: 383026, Japanese, p.1-32.
- Skempton AW. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation. Geotechnique 1986; 36(3): 425-447.
- Liao SSC, Whitman RV. Overbuden correction factor for SPT in sand. Journal of Geotechnical Engineering, ASCE 1986;112(3): 373-377.
- Kayen RE, Mitchell JK, Seed RB, Lodge AL, Nishio S, Couinho R. Evaluation of SPT, CPT, and Shear Waze Based Methods for Liquefaction Potential Assessment Using Lome Prieta Data. Proceedings, 4 th Japan-US Workshop on Earthquake Resistant Design of Life Line Facilities and Countermasures for Soil Liquefaction, 1992; 1: 177 – 204.
- Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE 1985; 111(12):1425-1445.
- Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Liam Finn WD, Harder JrLF,Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, IIIMartin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2001; 127(10): 817-833.
- AFAD, 2021. Afet ve Acil Durum Yönetimi Başkanlığı. Deprem Dairesi Başkanlığı, Türkiye İvme Veri Tabanı ve Analiz Sistemi.