Research Article
BibTex RIS Cite

INVESTIGATION OF RECYCLING OF BUILDING MATERIALS AS SAND IN THE PRODUCTION OF GEOPOLYMER MORTAR

Year 2022, , 404 - 419, 31.08.2022
https://doi.org/10.54365/adyumbd.1085538

Abstract

The main target of this study is to explore alternative recycled sand materials to the natural sand. For this, the possible utilization of different types of recycled sand in fly ash-based geopolymer mortar production was experimentally investigated in this study. Within this context, five different types of recycled sand materials acquired from the recycling of construction materials such as concrete, basalt tile, granite tile, marble tile, and ceramics tile were considered to be alternatives to the natural sand. In producing fly ash-based geopolymer mortars, the natural sand was substituted with these recycled sands at five replacement levels of 10, 20, 30, 40, and 50% by volume. Thereby, 26 different geopolymer mixtures, one of which was the control mixture, were designed and manufactured. Unit weight, water absorption, splitting tensile strength, and especially thermal conductivity characteristics of the geopolymer mortars were tested. The results of the experiment showed that the recycled sands did not affect the properties of geopolymer mortars seriously, and it was concluded that they could be used in the production of geopolymer mortars in a controlled manner.

References

  • Brown G. A global sand shortage could cause damaging effects to our rapidly urbanizing world. Business Insider. https://www.businessinsider.com/global-sand-shortage-could-cause-damaging-effects-2018-12 (Erişim Tarihi: 10.02.2022)
  • Gagg CR. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis 2014;40:114-140. https://doi.org/10.1016/j.engfailanal.2014.02.004
  • Mermerdaş K, İpek S, Mahmood Z. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Construction and Building Materials 2021;283:122756. https://doi.org/10.1016/j.conbuildmat.2021.122756
  • Ayodele OA, İpek S, Mermerdaş K. Effect of aggregate type on the permeability of concretes having the same compressive strength. Proceeding Book: 14th International Congress on Advances in Civil Engineering, Istanbul, Turkey; 2021.
  • Peng JX, Huang L, Zhao YB, Chen P, Zeng LU, Zheng W. Modeling of carbon dioxide measurement on cement plants. Advanced Materials Research 2012;610-613:2120-2128, https://doi.org/10.4028/www.scientific.net/AMR.610-613.2120
  • Cement, IEA, Paris. https://www.iea.org/reports/cement (Erişim Tarihi 11.02.2022)
  • Lämmlein TD, Messina F, Wyrzykowski M, Terrasi GP, Lura P. Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites 2019;100:130-138. https://doi.org/10.1016/j.cemconcomp.2019.02.014
  • Xie, N., Dang, Y., Shi, X. (2019) New insights into how MgCl2 deteriorates Portland cement concrete. Cement and Concrete Research, 120, 244–255, https://doi.org/10.1016/j.cemconres.2019.03.026
  • Elchalakani M, Aly T, Abu-Aisheh E. Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials 2014;1:10-24. https://doi.org/10.1016/j.cscm.2013.11.001
  • Gao T, Shen L, Shen M, Liu L, Chen F. Analysis of material flow and consumption in cement production process. Journal of Cleaner Production 2016;112(1):553-565. https://doi.org/10.1016/j.jclepro.2015.08.054
  • Hilburg J. Concrete production produces eight percent of the world's carbon dioxide emissions. The Architects’ Newspaper. https://www.archpaper.com/2019/01/concrete-production-eight-percent-co2-emissions (accessed on 20.02.2022)
  • Davidovits J. Properties of geopolymer cements. in Proceedings First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine; 1994. https://www.geopolymer.org/fichiers_pdf/KIEV.pdf
  • Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A. Study of various properties of geopolymer concrete - a review. Materials Today: Proceedings 2021;46(11):5687-5695. https://doi.org/10.1016/j.matpr.2020.09.835
  • Turner LK, Collins, FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Construction and Building Materials 2013;43:125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
  • Rovnaník P, Šafránková K. Thermal behaviour of metakaolin/fly ash geopolymers with chamotte aggregate. Materials 2016;9(7):535. https://doi.org/10.3390/ma9070535
  • Mermerdaş K, Manguri S, Nassani DE, Oleiwi SM. Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology, an International Journal 2017;20(6):1642-1652. https://doi.org/10.1016/j.jestch.2017.11.009
  • Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nanoalumina. Construction and Building Materials 2019;209:532-540. https://doi.org/10.1016/j.conbuildmat.2019.03.067
  • Ekmen Ş, Mermerdaş K, Algın Z. Effect of oxide composition and ingredient proportions on the rheological and mechanical properties of geopolymer mortar incorporating pumice aggregate. Journal of Building Engineering 2021;34:101893. https://doi.org/10.1016/j.jobe.2020.101893
  • Li H, Gao P, Xu F, Sun T, Zhou Y, Zhu J, Peng C, Lin J. Effect of fine aggregate particle characteristics on mechanical properties of fly ash-based geopolymer mortar. Minerals 2021;11(8):897. https://doi.org/10.3390/min11080897
  • Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production 2018;195:1069-1080. https://doi.org/10.1016/j.jclepro.2018.06.003
  • Poggetto GD, D’Angelo A, Blanco I, Piccolella S, Leonelli C, Catauro M. FT-IR study, thermal analysis, and evaluation of the antibacterial activity of a MK-geopolymer mortar using glass waste as fine aggregate. Polymers 2021;13(17):2970. https://doi.org/10.3390/polym13172970
  • Priyadharshini P, Ramamurthy K, Robinson RG. Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science 2017;146:81-91. https://doi.org/10.1016/j.clay.2017.05.038
  • Zhu P, Hua M, Liu H, Wang X, Chen C. Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates. Construction and Building Materials, 2020;259:119849. https://doi.org/10.1016/j.conbuildmat.2020.119849
  • Mermerdaş K, İpek S, Sor NH, Mulapeer ES, Ekmen Ş. The impact of artificial lightweight aggregate on the engineering features of geopolymer mortar. Turkish Journal of Nature and Science 2020;9(1):79-90. https://doi.org/10.46810/tdfd.718895
  • Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. American Society for Testing and Materials ASTM C311/C311M-18; 2018. https://doi.org/10.1520/C0311_C0311M-18
  • Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials ASTM C618-19; 2019. https://doi.org/10.1520/C0618-19
  • Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials ASTM C136/C136M-19; 2019. https://doi.org/10.1520/C0136_C0136M-19
  • Standard Specification for Concrete Aggregates. American Society for Testing and Materials ASTM C33; 2018. https://doi.org/10.1520/C0033_C0033M-18
  • Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International ASTM C127-15; 2015. https://doi.org/10.1520/C0127-15
  • İpek S. Macro and micro characteristics of eco-friendly fly ash-based geopolymer composites made of different types of recycled sand. Journal of Building Engineering, 2022;52:104431. https://doi.org/10.1016/j.jobe.2022.104431
  • Hou Y, Wang D, Zhou W, Lu H, Wang L. Effect of activator and curing mode on fly ash-based geopolymers. Journal of Wuhan University of Technology-Materials Science Edition 2009;24(5):711-715. https://doi.org/10.1007/s11595-009-5711-3
  • Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. American Society for Testing and Materials ASTM C138/C138M-17a; 2017. https://doi.org/10.1520/C0138_C0138M-17A
  • Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials ASTM C642-13; 2013. https://doi.org/10.1520/C0642-13
  • Gambhir ML. Concrete Technology. 5th ed. New Delhi: McGraw-Hill Education; 2013.
  • TS-EN 206+A1. Beton- Özellik, performans, imalat ve uygunluk. Turkish Standard Institute, Turkey; 2017.

YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ

Year 2022, , 404 - 419, 31.08.2022
https://doi.org/10.54365/adyumbd.1085538

Abstract

Bu çalışmanın temel amacı, doğal kuma alternatif olarak geri dönüştürülmüş kum malzemelerinin araştırılmasıdır. Bunun için bu çalışmada, uçucu kül bazlı geopolimer harç üretiminde yapı malzemelerinden geri dönüştürülmüş farklı kumların olası kullanım etkileri deneysel olarak araştırılmıştır. Bu kapsamda, beton, bazalt karo, granit karo, mermer karo ve seramik karo gibi inşaat malzemelerinin geri dönüşümünden elde edilen beş farklı türde geri dönüştürülmüş kum malzemesi doğal kuma alternatif olarak değerlendirilmiştir. Uçucu kül bazlı geopolimer harçların üretiminde, doğal kum, bu geri dönüştürülmüş kumlarla hacimce 10, 20, 30, 40 ve %50’lik oranlarda ikame edildi. Böylece biri kontrol karışımı olmak üzere toplam 26 farklı geopolimer karışımı tasarlanmış ve üretilmiştir. Üretilen geopolimer harçların birim ağırlık, su emme, yarmada çekme ve özellikle termal iletkenlik özellikleri test edildi. Deney sonuçları geri dönüşüm kumlarının geopolimer harçların özelliklerini ciddi mertebelerde etkilemediğini göstermiş olup bu geri dönüştürülmüş kumların kontrollü bir şekilde geopolimer harçların üretiminde kullanılabileceği sonucuna varılmıştır.

References

  • Brown G. A global sand shortage could cause damaging effects to our rapidly urbanizing world. Business Insider. https://www.businessinsider.com/global-sand-shortage-could-cause-damaging-effects-2018-12 (Erişim Tarihi: 10.02.2022)
  • Gagg CR. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis 2014;40:114-140. https://doi.org/10.1016/j.engfailanal.2014.02.004
  • Mermerdaş K, İpek S, Mahmood Z. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Construction and Building Materials 2021;283:122756. https://doi.org/10.1016/j.conbuildmat.2021.122756
  • Ayodele OA, İpek S, Mermerdaş K. Effect of aggregate type on the permeability of concretes having the same compressive strength. Proceeding Book: 14th International Congress on Advances in Civil Engineering, Istanbul, Turkey; 2021.
  • Peng JX, Huang L, Zhao YB, Chen P, Zeng LU, Zheng W. Modeling of carbon dioxide measurement on cement plants. Advanced Materials Research 2012;610-613:2120-2128, https://doi.org/10.4028/www.scientific.net/AMR.610-613.2120
  • Cement, IEA, Paris. https://www.iea.org/reports/cement (Erişim Tarihi 11.02.2022)
  • Lämmlein TD, Messina F, Wyrzykowski M, Terrasi GP, Lura P. Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites 2019;100:130-138. https://doi.org/10.1016/j.cemconcomp.2019.02.014
  • Xie, N., Dang, Y., Shi, X. (2019) New insights into how MgCl2 deteriorates Portland cement concrete. Cement and Concrete Research, 120, 244–255, https://doi.org/10.1016/j.cemconres.2019.03.026
  • Elchalakani M, Aly T, Abu-Aisheh E. Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials 2014;1:10-24. https://doi.org/10.1016/j.cscm.2013.11.001
  • Gao T, Shen L, Shen M, Liu L, Chen F. Analysis of material flow and consumption in cement production process. Journal of Cleaner Production 2016;112(1):553-565. https://doi.org/10.1016/j.jclepro.2015.08.054
  • Hilburg J. Concrete production produces eight percent of the world's carbon dioxide emissions. The Architects’ Newspaper. https://www.archpaper.com/2019/01/concrete-production-eight-percent-co2-emissions (accessed on 20.02.2022)
  • Davidovits J. Properties of geopolymer cements. in Proceedings First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine; 1994. https://www.geopolymer.org/fichiers_pdf/KIEV.pdf
  • Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A. Study of various properties of geopolymer concrete - a review. Materials Today: Proceedings 2021;46(11):5687-5695. https://doi.org/10.1016/j.matpr.2020.09.835
  • Turner LK, Collins, FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Construction and Building Materials 2013;43:125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
  • Rovnaník P, Šafránková K. Thermal behaviour of metakaolin/fly ash geopolymers with chamotte aggregate. Materials 2016;9(7):535. https://doi.org/10.3390/ma9070535
  • Mermerdaş K, Manguri S, Nassani DE, Oleiwi SM. Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology, an International Journal 2017;20(6):1642-1652. https://doi.org/10.1016/j.jestch.2017.11.009
  • Mohseni E, Kazemi MJ, Koushkbaghi M, Zehtab B, Behforouz B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nanoalumina. Construction and Building Materials 2019;209:532-540. https://doi.org/10.1016/j.conbuildmat.2019.03.067
  • Ekmen Ş, Mermerdaş K, Algın Z. Effect of oxide composition and ingredient proportions on the rheological and mechanical properties of geopolymer mortar incorporating pumice aggregate. Journal of Building Engineering 2021;34:101893. https://doi.org/10.1016/j.jobe.2020.101893
  • Li H, Gao P, Xu F, Sun T, Zhou Y, Zhu J, Peng C, Lin J. Effect of fine aggregate particle characteristics on mechanical properties of fly ash-based geopolymer mortar. Minerals 2021;11(8):897. https://doi.org/10.3390/min11080897
  • Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production 2018;195:1069-1080. https://doi.org/10.1016/j.jclepro.2018.06.003
  • Poggetto GD, D’Angelo A, Blanco I, Piccolella S, Leonelli C, Catauro M. FT-IR study, thermal analysis, and evaluation of the antibacterial activity of a MK-geopolymer mortar using glass waste as fine aggregate. Polymers 2021;13(17):2970. https://doi.org/10.3390/polym13172970
  • Priyadharshini P, Ramamurthy K, Robinson RG. Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science 2017;146:81-91. https://doi.org/10.1016/j.clay.2017.05.038
  • Zhu P, Hua M, Liu H, Wang X, Chen C. Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates. Construction and Building Materials, 2020;259:119849. https://doi.org/10.1016/j.conbuildmat.2020.119849
  • Mermerdaş K, İpek S, Sor NH, Mulapeer ES, Ekmen Ş. The impact of artificial lightweight aggregate on the engineering features of geopolymer mortar. Turkish Journal of Nature and Science 2020;9(1):79-90. https://doi.org/10.46810/tdfd.718895
  • Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. American Society for Testing and Materials ASTM C311/C311M-18; 2018. https://doi.org/10.1520/C0311_C0311M-18
  • Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials ASTM C618-19; 2019. https://doi.org/10.1520/C0618-19
  • Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials ASTM C136/C136M-19; 2019. https://doi.org/10.1520/C0136_C0136M-19
  • Standard Specification for Concrete Aggregates. American Society for Testing and Materials ASTM C33; 2018. https://doi.org/10.1520/C0033_C0033M-18
  • Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International ASTM C127-15; 2015. https://doi.org/10.1520/C0127-15
  • İpek S. Macro and micro characteristics of eco-friendly fly ash-based geopolymer composites made of different types of recycled sand. Journal of Building Engineering, 2022;52:104431. https://doi.org/10.1016/j.jobe.2022.104431
  • Hou Y, Wang D, Zhou W, Lu H, Wang L. Effect of activator and curing mode on fly ash-based geopolymers. Journal of Wuhan University of Technology-Materials Science Edition 2009;24(5):711-715. https://doi.org/10.1007/s11595-009-5711-3
  • Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. American Society for Testing and Materials ASTM C138/C138M-17a; 2017. https://doi.org/10.1520/C0138_C0138M-17A
  • Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials ASTM C642-13; 2013. https://doi.org/10.1520/C0642-13
  • Gambhir ML. Concrete Technology. 5th ed. New Delhi: McGraw-Hill Education; 2013.
  • TS-EN 206+A1. Beton- Özellik, performans, imalat ve uygunluk. Turkish Standard Institute, Turkey; 2017.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Süleyman İpek 0000-0001-8891-949X

Şevin Ekmen 0000-0002-2577-696X

Publication Date August 31, 2022
Submission Date March 10, 2022
Published in Issue Year 2022

Cite

APA İpek, S., & Ekmen, Ş. (2022). YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(17), 404-419. https://doi.org/10.54365/adyumbd.1085538
AMA İpek S, Ekmen Ş. YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2022;9(17):404-419. doi:10.54365/adyumbd.1085538
Chicago İpek, Süleyman, and Şevin Ekmen. “YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 17 (August 2022): 404-19. https://doi.org/10.54365/adyumbd.1085538.
EndNote İpek S, Ekmen Ş (August 1, 2022) YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9 17 404–419.
IEEE S. İpek and Ş. Ekmen, “YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 17, pp. 404–419, 2022, doi: 10.54365/adyumbd.1085538.
ISNAD İpek, Süleyman - Ekmen, Şevin. “YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 9/17 (August 2022), 404-419. https://doi.org/10.54365/adyumbd.1085538.
JAMA İpek S, Ekmen Ş. YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9:404–419.
MLA İpek, Süleyman and Şevin Ekmen. “YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 17, 2022, pp. 404-19, doi:10.54365/adyumbd.1085538.
Vancouver İpek S, Ekmen Ş. YAPI MALZEMELERİNİN GEOPOLİMER HARÇ ÜRETİMİNDE KUM OLARAK GERİ DÖNÜŞTÜRÜLMESİNİN İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2022;9(17):404-19.