In this article, it is aimed to categorize meaningful content from uncontrolled growing written social sharing data using natural language processing. Uncategorized data can disturb social sharing users with an increasing user network due to deprecating and negative content. For the stated reason, a hybrid model based on CNN and LSTM has been proposed to automatically classify all written social sharing content, both positive and negative, into defined target tags. With the proposed hybrid model, it is aimed at automatically classifying the content of the social sharing system into different categories by using the simplest embedding layer, keras. As a result of the experimental studies carried out, a better result was obtained than in the different studies in the literature using the same data set with the proposed method. The obtained performance results show that the proposed method can be applied to different multilabel text analysis problems.
Long Short Term Memory Convolutional Neural Network Multi-Label Text Classification Social Network
Bu makalede doğal dil işleme kullanılarak kontrolsüz olarak büyüyen yazılı sosyal paylaşım verilerinin içerisinden anlamlı içeriklerin kategorize edilmesi amaçlanmıştır. Kategorize edilmeyen verilerin, artan kullanıcı ağına sahip sosyal paylaşım kullanıcılarını olumsuz ve negatif içerikten dolayı rahatsız edebilmektedir. Belirtilen sebepten dolayı olumlu ve olumsuz olmak üzere tüm yazılı sosyal paylaşım içeriklerinin tanımlı hedef etiketlerine otomatik olarak sınıflandırılabilmesi için CNN ve LSTM tabanlı bir hibrit model önerilmiştir. Önerilen hibrit model ile en basit gömme katmanı olan keras kullanılarak farklı kategorilere sahip sosyal paylaşım sistemi içeriklerinin otomatik sınıflandırılması hedeflenmiştir. Gerçekleştirilen deneysel çalışmalar neticesinde önerilen yöntem ile aynı veri setini kullanan literatürdeki farklı çalışmalardan daha iyi bir sonuç elde edilmiştir. Elde edilen performans sonuçları önerilen yöntemin farklı çok etiketli metin analizi problemlerine de uygulanabileceği göstermektedir.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Makaleler |
Authors | |
Publication Date | August 31, 2022 |
Submission Date | April 21, 2022 |
Published in Issue | Year 2022 |