Research Article
BibTex RIS Cite

BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ

Year 2023, , 210 - 226, 31.12.2023
https://doi.org/10.54365/adyumbd.1318670

Abstract

Yapıştırma bağlantıları, mekanik bağlantı tekniklerine alternatif oluşturabilecek, endüstrinin birçok alanında kullanımı gittikçe artan bir bağlantı yöntemidir. Yapıştırma bağlantılarının dayanımlarının tahmin edilmesine yönelik ilk çalışmalar, analitik olarak yapılmıştır. Sonra sayısal bir teknik olan sonlu elemanlar yönteminin yaygınlaşmaya başlamasıyla birlikte, yapıştırma bağlantılarının dayanım tahminleri geometri sınırlaması olmadan kapsamlı bir şekilde yapılmaya başlandı. Yapıştırma bağlantılarında hasar tahminleri yapılması amacıyla çok sayıda hasar kriteri literatürde bulunmaktadır. Bu kriterlerin kullanılabilmesi için kritik bölgedeki gerilme veya gerinme dağılımları analitik veya sayısal yöntemlerle hesaplandıktan sonra en uygun kriter belirlenerek hasar tahminleri yapılabilmektedir. Kriter seçiminde bağlantı geometrisi, kullanılan yapıştırıcının mekanik davranışı önemlidir. Ayrıca yapıştırıcı hasar kriterlerinin uygulanabilmesi için yapıştırıcı tabakasının, bağlantının genel mukavemeti içerisinde en zayıf kısım olması gerekmektedir. Bu çalışmada, epoksi yapıştırıcı ve çelik plaka kullanılarak oluşturulan basit yapıştırma bağlantısında, analitik modeller ve sonlu elemanlar yöntemi kullanılarak hasar yükleri elde edilmiştir. Analitik ve sayısal hasar yükleri daha önce yapılan deneysel çalışma sonucunda elde edilen hasar yüküyle karşılaştırılmıştır.

References

  • Sánchez-Arce IJ, Ramalho LDC, Campilho RDSG, Belinha J. Evaluation of an elastic meshless formulation to adhesive joints’ strength prediction against established methods. Journal of Adhesion Science and Technology 2020; 34: 1206-1232.
  • Adams RD, Wake WD. Structural adhesive joints in engineering. Elsevier Applied Science Publishers, England, 1984.
  • Da Silva LF, Dillard DA, Blackman B, Adams RD. Testing adhesive joints: best practices. John Wiley & Sons, 2012.
  • Rodríguez RQ, De Paiva WP, Sollero P, Rodrigues PMRB, De Albuquerque EL. Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives 2012; 37: 26-36.
  • Rodríguez RQ, Sollero P, Rodrigues MB, De Albuquerque EL. Stress analysis and failure criteria of adhesive bonded single lap joints. In 21st international congress of mechanical engineering, pp. 24-28, Natal, RN, Brazil 2011.
  • Volkersen O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtfor schung 1938, 15: 41-47.
  • Goland M, Reissner E. The Stresses in Cemented Joints. J. Appl. Mech. 1944; 11: A17–A27.
  • Hart-Smith LJ. Adhesive-bonded single-lap joints, NASA CR-11223 Technical report, 1973.
  • Da Silva LF, Lima RF, Teixeira RM, Puga A. Closed-form solutions for adhesively bonded joints. Reports of the project" Development of the software for the design of adhesive joints" University of Porto, Portugal, 2008.
  • Raghava R, Caddell RM, Yeh GS. The macroscopic yield behaviour of polymers. Journal of Materials Science 1973; 8: 225-232.
  • Bigwood DA, Crocombe AD. Elastic analysis and engineering design formulae for bonded joints. International journal of Adhesion and Adhesives 1989; 9: 229-242.
  • Adams RD, Mallick V. The effect of temperature on the strength of adhesively-bonded composite-aluminium joints. The Journal of Adhesion 1993, 43: 17-33.
  • Mortensen F, Thomsen OT. Analysis of adhesive bonded joints: a unified approach. Composites Science and Technology 2022; 62: 1011-1031.
  • Adams RD, Peppiatt NA. Stress analysis of adhesive-bonded lap joints. Journal of strain analysis 1974; 9: 185-196.
  • Crocombe AD. Global yielding as a failure criterion for bonded joints. International Journal of Adhesion and Adhesives 1989; 9: 145-153.
  • Roberts TM. Shear and normal stresses in adhesive joints. Journal of Engineering Mechanics 1989; 115: 2460-2479.
  • Odi RA, Friend CM. An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives 2004; 24: 389-405.
  • Adams RD, Harris JA. The influence of local geometry on the strength of adhesive joints. International Journal of Adhesion and Adhesives 1987; 7: 69-80.
  • Adams RD, Atkins RW, Harris JA, Kinloch AJ. Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. The Journal of Adhesion 1986; 20: 29-53.
  • Saraç İ, Adin A, Temiz Ş. Investigation of the effect of use of Nano-Al2O3, Nano-TiO2 and Nano-SiO2 powders on strength of single lap joints bonded with epoxy adhesive. Composites Part B: Engineering 2019; 166: 472-482.
  • Akpinar S. The strength of the adhesively bonded step-lap joints for different step numbers. Composites Part B: Engineering 2014; 67: 170-178.
  • Kim MS, Kim HT, Choi YH, Kim JH, Kim SK, Lee JMA. New Computational Method for Predicting Ductile Failure of 304L Stainless Steel. Metals 2022; 12:1309.
  • Aydın MD, Akpınar S, Özel A, Erdoğan S. Kayma yüküne maruz yapıştırma bağlantılarından yapısal yapıştırıcıların mekanik özelliklerinin belirlenmesi, Mühendis ve Makina 2015; 56: 48-55.
  • ANSYS. The general purpose finite element software swanson analysis systems, Houston, Texas, 2022.
  • Yue T, Wahab MA. Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear. Wear 2014; 321: 53-63.
  • Noorman DC. Cohesive zone modelling in adhesively bonded joints: Analysis on crack propagation in adhesives and adherends. Master’s thesis, Delft University of Technology, 2014
  • Mohammed Waseem HS, Kiran Kumar N. Finite element modeling for delamination analysis of double cantilever beam specimen. International Journal of Mechanical Engineering 2014; 1: 27-34.
  • Campilho RDSG, Banea MD, Pinto AMG, da Silva LFM, de Jesus AMP. Strength prediction o fsingle - and double - lap joints by standard and extended finite element modelling. International Journal of Adhesion & Adhesives 2011, 31: 363-372.
  • Fiamegkou E. Development of improved, multi-functional, nano-structured polymer based adhesives with applications in the bonding of composite components and the repair of engineering structures with composite patches. PhD thesis, University of Patras, 2015.
  • Harris J, Adams RD. Strength prediction of bonded single lap joints by nonlinear finite element methods. International journal of adhesion and adhesives 1984; 4: 65-78. 1984.
  • Crocombe AD, Bigwood DA, Richardson G. Analysing structural adhesive joints for failure. International journal of adhesion and adhesive 1990; 10: 167-178. 1990.
  • Ikegami K, Takeshita T, Matsuo K, Sugibayashi T. Strength of adhesively bonded scarf joints between glass fibre reinforced plastics and metals. International journal of adhesion and adhesive 1990; 103: 199–206.
  • Charalambides M, Kinloch A, Matthews F. Strength prediction of bonded joints. In: Proceedings of AGARD conference on bolted/bonded joints in polymeric composites, London, 1997.
  • Lee SJ, Lee DG. Development of a failure model for the adhesively bonded tubular single lap joint. The Journal of Adhesion 1992; 40: 1-14.
  • Crocombe AD, Adams RD. An elasto-plastic investigation of the peel test. The Journal of Adhesion 1982; 13: 241-267.
  • Calik A. Effect of adherend shape on stress concentration reduction of adhesively single lap joint. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva 2016; 36: 29-34.
  • Saraç İ. Çekme yükü uygulanmış boru yapıştırma bağlantılarında bindirme uç geometrisinin bağlantı dayanımına etkisinin araştırılması, Konya Mühendislik Bilimleri Dergisi 2020; 8:733-744.
  • Saraç İ. Basit bindirmeli yapıştırma bağlantılarında bindirme bölgesi uç açı değişiminin bağlantı mukavemetine etkisinin sayısal olarak incelenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2020; 25: 101-110.
  • Mohapatra PC, Smith LV. Characterization of adhesive yield criteria usingmixed-mode loading. Journal of Adhesion Science and Technology 2019, 33: 1248-1260.

INVESTIGATION OF ADHESIVE FAILURE CRITERIA FOR HIGH STRENGTH AN EPOXY ADHESIVE IN SIMPLE ADHESIVE JOINTS

Year 2023, , 210 - 226, 31.12.2023
https://doi.org/10.54365/adyumbd.1318670

Abstract

Adhesive joints are a fastening method that can be employed as an alternative to mechanical connection techniques and is increasingly used in many areas of the industry. The first studies on estimating the strength of adhesive joints were made analytically. Then, with the widespread use of the finite element method, which is a numerical way, the strength estimates of adhesive joints began to be made comprehensively without any geometry limitation. Numerous damage criteria are present in the literature for damage estimation of adhesive bonds. In order to use these criteria, after the stress or strain distributions in the critical region are calculated by analytical or numerical methods, damage estimates can be made by determining the most appropriate criterion. In the selection of criteria, the connection geometry and the mechanical behavior of the adhesive used are important. In addition, for the adhesive damage criteria to be applied, the adhesive layer must be the weakest part of the overall strength of the joint. In this study, failure loads were obtained using analytical models and finite element method for a simple bonding joint formed by using epoxy adhesive and steel plate. Analytical and numerical damage loads were compared with the damage load obtained as a result of the previous experimental study.

References

  • Sánchez-Arce IJ, Ramalho LDC, Campilho RDSG, Belinha J. Evaluation of an elastic meshless formulation to adhesive joints’ strength prediction against established methods. Journal of Adhesion Science and Technology 2020; 34: 1206-1232.
  • Adams RD, Wake WD. Structural adhesive joints in engineering. Elsevier Applied Science Publishers, England, 1984.
  • Da Silva LF, Dillard DA, Blackman B, Adams RD. Testing adhesive joints: best practices. John Wiley & Sons, 2012.
  • Rodríguez RQ, De Paiva WP, Sollero P, Rodrigues PMRB, De Albuquerque EL. Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives 2012; 37: 26-36.
  • Rodríguez RQ, Sollero P, Rodrigues MB, De Albuquerque EL. Stress analysis and failure criteria of adhesive bonded single lap joints. In 21st international congress of mechanical engineering, pp. 24-28, Natal, RN, Brazil 2011.
  • Volkersen O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtfor schung 1938, 15: 41-47.
  • Goland M, Reissner E. The Stresses in Cemented Joints. J. Appl. Mech. 1944; 11: A17–A27.
  • Hart-Smith LJ. Adhesive-bonded single-lap joints, NASA CR-11223 Technical report, 1973.
  • Da Silva LF, Lima RF, Teixeira RM, Puga A. Closed-form solutions for adhesively bonded joints. Reports of the project" Development of the software for the design of adhesive joints" University of Porto, Portugal, 2008.
  • Raghava R, Caddell RM, Yeh GS. The macroscopic yield behaviour of polymers. Journal of Materials Science 1973; 8: 225-232.
  • Bigwood DA, Crocombe AD. Elastic analysis and engineering design formulae for bonded joints. International journal of Adhesion and Adhesives 1989; 9: 229-242.
  • Adams RD, Mallick V. The effect of temperature on the strength of adhesively-bonded composite-aluminium joints. The Journal of Adhesion 1993, 43: 17-33.
  • Mortensen F, Thomsen OT. Analysis of adhesive bonded joints: a unified approach. Composites Science and Technology 2022; 62: 1011-1031.
  • Adams RD, Peppiatt NA. Stress analysis of adhesive-bonded lap joints. Journal of strain analysis 1974; 9: 185-196.
  • Crocombe AD. Global yielding as a failure criterion for bonded joints. International Journal of Adhesion and Adhesives 1989; 9: 145-153.
  • Roberts TM. Shear and normal stresses in adhesive joints. Journal of Engineering Mechanics 1989; 115: 2460-2479.
  • Odi RA, Friend CM. An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives 2004; 24: 389-405.
  • Adams RD, Harris JA. The influence of local geometry on the strength of adhesive joints. International Journal of Adhesion and Adhesives 1987; 7: 69-80.
  • Adams RD, Atkins RW, Harris JA, Kinloch AJ. Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. The Journal of Adhesion 1986; 20: 29-53.
  • Saraç İ, Adin A, Temiz Ş. Investigation of the effect of use of Nano-Al2O3, Nano-TiO2 and Nano-SiO2 powders on strength of single lap joints bonded with epoxy adhesive. Composites Part B: Engineering 2019; 166: 472-482.
  • Akpinar S. The strength of the adhesively bonded step-lap joints for different step numbers. Composites Part B: Engineering 2014; 67: 170-178.
  • Kim MS, Kim HT, Choi YH, Kim JH, Kim SK, Lee JMA. New Computational Method for Predicting Ductile Failure of 304L Stainless Steel. Metals 2022; 12:1309.
  • Aydın MD, Akpınar S, Özel A, Erdoğan S. Kayma yüküne maruz yapıştırma bağlantılarından yapısal yapıştırıcıların mekanik özelliklerinin belirlenmesi, Mühendis ve Makina 2015; 56: 48-55.
  • ANSYS. The general purpose finite element software swanson analysis systems, Houston, Texas, 2022.
  • Yue T, Wahab MA. Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear. Wear 2014; 321: 53-63.
  • Noorman DC. Cohesive zone modelling in adhesively bonded joints: Analysis on crack propagation in adhesives and adherends. Master’s thesis, Delft University of Technology, 2014
  • Mohammed Waseem HS, Kiran Kumar N. Finite element modeling for delamination analysis of double cantilever beam specimen. International Journal of Mechanical Engineering 2014; 1: 27-34.
  • Campilho RDSG, Banea MD, Pinto AMG, da Silva LFM, de Jesus AMP. Strength prediction o fsingle - and double - lap joints by standard and extended finite element modelling. International Journal of Adhesion & Adhesives 2011, 31: 363-372.
  • Fiamegkou E. Development of improved, multi-functional, nano-structured polymer based adhesives with applications in the bonding of composite components and the repair of engineering structures with composite patches. PhD thesis, University of Patras, 2015.
  • Harris J, Adams RD. Strength prediction of bonded single lap joints by nonlinear finite element methods. International journal of adhesion and adhesives 1984; 4: 65-78. 1984.
  • Crocombe AD, Bigwood DA, Richardson G. Analysing structural adhesive joints for failure. International journal of adhesion and adhesive 1990; 10: 167-178. 1990.
  • Ikegami K, Takeshita T, Matsuo K, Sugibayashi T. Strength of adhesively bonded scarf joints between glass fibre reinforced plastics and metals. International journal of adhesion and adhesive 1990; 103: 199–206.
  • Charalambides M, Kinloch A, Matthews F. Strength prediction of bonded joints. In: Proceedings of AGARD conference on bolted/bonded joints in polymeric composites, London, 1997.
  • Lee SJ, Lee DG. Development of a failure model for the adhesively bonded tubular single lap joint. The Journal of Adhesion 1992; 40: 1-14.
  • Crocombe AD, Adams RD. An elasto-plastic investigation of the peel test. The Journal of Adhesion 1982; 13: 241-267.
  • Calik A. Effect of adherend shape on stress concentration reduction of adhesively single lap joint. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva 2016; 36: 29-34.
  • Saraç İ. Çekme yükü uygulanmış boru yapıştırma bağlantılarında bindirme uç geometrisinin bağlantı dayanımına etkisinin araştırılması, Konya Mühendislik Bilimleri Dergisi 2020; 8:733-744.
  • Saraç İ. Basit bindirmeli yapıştırma bağlantılarında bindirme bölgesi uç açı değişiminin bağlantı mukavemetine etkisinin sayısal olarak incelenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2020; 25: 101-110.
  • Mohapatra PC, Smith LV. Characterization of adhesive yield criteria usingmixed-mode loading. Journal of Adhesion Science and Technology 2019, 33: 1248-1260.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Information Security Management
Journal Section Makaleler
Authors

İsmail Saraç 0000-0001-8438-2744

Publication Date December 31, 2023
Submission Date June 22, 2023
Published in Issue Year 2023

Cite

APA Saraç, İ. (2023). BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 210-226. https://doi.org/10.54365/adyumbd.1318670
AMA Saraç İ. BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. December 2023;10(21):210-226. doi:10.54365/adyumbd.1318670
Chicago Saraç, İsmail. “BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 21 (December 2023): 210-26. https://doi.org/10.54365/adyumbd.1318670.
EndNote Saraç İ (December 1, 2023) BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21 210–226.
IEEE İ. Saraç, “BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 21, pp. 210–226, 2023, doi: 10.54365/adyumbd.1318670.
ISNAD Saraç, İsmail. “BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/21 (December 2023), 210-226. https://doi.org/10.54365/adyumbd.1318670.
JAMA Saraç İ. BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:210–226.
MLA Saraç, İsmail. “BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 21, 2023, pp. 210-26, doi:10.54365/adyumbd.1318670.
Vancouver Saraç İ. BASİT YAPIŞTIRMA BAĞLANTILARINDA YAPIŞTIRICI HASAR KRİTERLERİNİN YÜKSEK DAYANIMLI EPOKSİ YAPIŞTIRICIDA İNCELENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(21):210-26.