Research Article
BibTex RIS Cite

YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ

Year 2024, , 332 - 351, 31.08.2024
https://doi.org/10.54365/adyumbd.1490486

Abstract

Çeşitli endüstriyel ve evsel uygulamalar için sıcak hava üretiminde kullanılan havalı güneş kollektörlerinin (SAC) termal verimliliğini arttırmak için genellikle kollektör geometrisi ve akış modelleri üzerine çalışmalar yapılmaktadır. Jet çarpmalı hava kollektörlerinde (JIPSAC) yutucu plaka ve nozulun geometrik şekli, ısıl performansı önemli bir ölçüde etkilemektedir. Bu çalışmada jet çarpmalı havalı güneş kollektöründe ısıl verimliliğini artırmak için yarı küresel yüzeyli emici plaka (HAP) ve dairesel konik nozul (CTN) çifti önerilmiştir. Konik dairesel nozuldan geçen jet akışlı havanın yarım küre şekilli absorber plakaya çarpmasının ısıl verime etkisini incelemek için deneysel çalışma yapılmıştır. Deneysel sonuçları karşılaştırmak için oluşturulan modelin Ansys Fluent 19.2 versiyonu kullanılarak CFD analizi yapılmıştır. Akış fiziğini görselleştirmeye yardımcı olmak için basınç ve hız akım çizgilerinin konturları sunulmuş ve tartışılmıştır. Deneysel ve sayısal analizlerden, yarı küresel emici plaka ve dairesel konik nozul çifti (HAP-CTN) kullanılan jet çarpmalı havalı güneş kollektörünün ısıl verimliliğinin, düz yutucu plakalı jet çarpmalı havalı güneş kollektörüne kıyasla ortalama çıkış sıcaklığı üzerinde %12.33 lük bir artış sağladığı görülmüştür. HAP-CTN çifti kullanılan JIPSAC’ da aynı kombinasyonlar için yapılan deneysel çalışmada kollektörün en yüksek ortalama verimi, 0.0185 kg/s kütlesel debide %24.5 ve en yüksek ortalama kollektör çıkış sıcaklığı 47.8 oC olarak tespit edilmiştir.

Supporting Institution

HARRAN ÜNİVERSİTESİ BAP

Project Number

19249

References

  • Sureandhar, G., Srinivasan, G., Muthukumar, P., Senthilmurugan, S., 2021. Performance analysis of arc rib fin embedded in a solar air heater. Therm. Sci. Eng. Prog. 23 https://doi.org/10.1016/j.tsep.2021.100891.
  • Rahmani, E., Moradi, T., Fattahi, A., Delpisheh, M., Karimi, N., Ommi, F., et al., 2021. Numerical simulation of a solar air heater equipped with wavy and raccoon-shaped f ins: The effect of fins’ height. Sustain Energy Technol. Assess. 45, 101227 https:// doi.org/10.1016/j.seta.2021.10122
  • Parsa, H., Saffar-Avval, M., Hajmohammadi, M.R., 2021. 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles. Int J. Mech. Sci. 205, 106607 https://doi.org/10.1016/j.ijmecsci.2021.106607.
  • Amara, W.B., Bouabidi, A., 2023. Experimental studies and 3D simulations for the investigation of thermal performances of a solar air heater with different spiral- shaped baffles heights. J. Build. Eng. 65, 105662.
  • Khanlari, A., Tuncer, A.D., S¨ ozen, A., Aytaç, I., Çiftçi, E., Variyenli, H.˙ I., 2022. Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles. Renew. Energy 187, 586–602.
  • Selimefendigil, F., S ¸irin, C., Ghachem, K., Kolsi, L., Alqahtani, T., Algarni, S., 2022b. Enhancing the performance of a greenhouse drying system by using triple-flow solar air collector with nano-enhanced absorber coating. Case Stud. Therm. Eng. 34, 102011.
  • Oztürk, M., Yüksel, C., Çiftçi, E., 2024. Investigation of a Photovoltaic–Thermal Solar Dryer System with Double-Pass Solar Air Collectors and Absorber Surfaces Enhanced with Graphene Nanoparticles. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369- 024-08717-z.
  • Jasyal, N.K., Sharma, S.L., Debbarma, A., 2023. Performance analysis of solar air heater using triangular corrugated absorber under jet impingement. Energy Sources, Part A: Recovery, Util., Environ. Eff. 45 (3), 9063–9080.
  • Ho, C.D., Lin, C.S., Chuang, Y.C., Chao, C.C., 2013. Performance improvement of wire mesh packed double-pass solar air heaters with external recycle. Renew. Energy 57, 479–489.
  • Gürbüz, E.Y., Sahinkesen, ˙ I., Kusun, B., Tuncer, A.D., Keçebas¸, A., 2023. Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano- enhanced absorber coating. Energy 277, 127704.
  • Dong, Z., Du, Q., Liu, P., Liu, Z., Liu, W., 2023. A numerical investigation and irreversibility optimization of constantly grooved solar air heaters. Renew. Energy 207, 629–646.
  • Tuncer, A.D., Amini, A., Khanlari, A., 2023. Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint. Sol. Energy 263, 111958.
  • Alomar, O.R., Abd, H.M., Salih, M.M.M., 2022. Efficiency enhancement of solar air heater collector by modifying jet impingement with v-corrugated absorber plate. J. Energy Storage 55, 105535.
  • Farzan, H., Hasan Zaim, E., 2023. Study on thermal performance of a new combined perforated Metallic/Asphalt solar air heater for heating Applications: An experimental study. Sol. Energy 249, 485–494. https://doi.org/10.1016/j. solener.2022.12.008.
  • W. Gao, W. Lin, T. Liu, and C. Xia, “Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters,” Appl. Energy, vol. 84, no. 4, pp. 425–441, 2007, doi: https://doi.org/10.1016/j.apenergy.2006.02.005.
  • T. A. Yassen, N. D. Mokhlif, and M. Asmail, “Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use,” Renew. Energy, vol. 138, pp. 852–860, 2019, doi: 10.1016/j.renene.2019.01.114.
  • S.A. Abdel-Moneim Atwan, E.F. Atwan, and A.R. El-Shamy, “Heat Transfer and Flow Friction in a Rectangular Duct with Repeated Multiple v-ribs Mounted on the Bottom Wall,” in 12th International Mechanical Power Engineering Conference (IMPEC12), 2001, pp. 11–25.
  • C.-O. Olsson and B. Sunden, “Thermal and Hydraulic Performance of a Rectangular Duct With Multiple V-Shaped Ribs,” J. Heat Transfer, vol. 120, no. 4, pp. 1072–1077, Nov. 1998, doi: 10.1115/1.2825892.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, “Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs,” J. Heat Transfer, vol. 113, no. 3, pp. 590–596, Aug. 1991, doi: 10.1115/1.2910606.
  • E. A. M. Elshafei, M. M. Awad, E. El-Negiry, and A. G. Ali, “Heat transfer and pressure drop in corrugated channels,” Energy, vol. 35, no. 1, pp. 101–110, Jan. 2010, doi: 10.1016/J.ENERGY.2009.08.031.
  • H. Pehlivan, I. Taymaz, and Y. İ, “Experimental study of forced convective heat transfer in a different arranged corrugated channel,” Int. Commun. Heat Mass Transf., vol. 46, pp. 106–111, 2013, doi: 10.1016/j.icheatmasstransfer.2013.05.016.
  • M. A. Mehrabian and R. Poulter, “Hydrodynamics and thermal characteristics of corrugated channels: computational approach,” Appl. Math. Model., vol. 24, no. 5, pp. 343–364, 2000, doi: https://doi.org/10.1016/S0307-904X(99)00039-6.
  • K. Sarraf, S. Launay, and L. Tadrist, “Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers,” Int. J. Therm. Sci., vol. 94, pp. 126–138, 2015, doi: https://doi.org/10.1016/j.ijthermalsci.2015.03.002.
  • Y. Qin, X. Guan, Z. Dun, and H. Liu, “Numerical simulation on fluid flow and heat transfer in a corrugated plate air preheater,” Dongli Gongcheng Xuebao/Journal Chinese Soc. Power Eng., vol. 35, pp. 213–218, Mar. 2015.
  • C. Zimmerer, P. Gschwind, G. Gaiser, and V. Kottke, “Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls,” Exp. Therm. Fluid Sci., vol. 26, no. 2, pp. 269–273, 2002, doi: https://doi.org/10.1016/S0894-1777(02)00136-X.
  • J. E. O’Brien and E. M. Sparrow, “Corrugated-Duct Heat Transfer, Pressure Drop, and Flow Visualization,” J. Heat Transfer, vol. 104, no. 3, p. 410, Aug. 1982, doi: 10.1115/1.3245108.
  • Y. Islamoglu and C. Parmaksizoglu, “The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel,” Appl. Therm. Eng., vol. 23, no. 8, pp. 979–987, Jun. 2003, doi: 10.1016/S1359-4311(03)00029-2.
  • A. Hamza, H. Ali, and Y. Hanaoka, “Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation,” Int. J. Heat Mass Transf., vol. 45, no. 10, pp. 2107–2117, 2002.
  • Salman, M., Chauhan, R., Poongavanam, G. K., & Kim, S. C., 2022. Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis. Renewable Energy, 199, 1248-1257.
  • Zhu, T. T., Diao, Y. H., Zhao, Y. H., & Deng, Y. C., 2015. Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays. Energy conversion and management, 94, 447-457.
  • R. Chauhan and N. S. Thakur, “Heat transfer and friction factor correlations for impinging jet solar air heater,” Exp. Therm. Fluid Sci., vol. 44, pp. 760–767, 2013, doi: 10.1016/j.expthermflusci.2012.09.019.
  • M. A. R. Sharif and A. Banerjee, “Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate,” Appl. Therm. Eng., vol. 29, no. 2–3, pp. 532–540, Feb. 2009, doi: 10.1016/J.APPL THERMA LENG. 2008.03.011.
  • M. Imbriale, A. Ianiro, C. Meola, and G. Cardone, “Convective heat transfer by a row of jets impinging on a concave surface,” Int. J. Therm. Sci., vol. 75, pp. 153–163, Jan. 2014, doi: 10.1016/J.IJTHERMALSCI.2013.07.017.
  • E. Öztekin, O. Aydin, and M. Avcı, “Heat transfer in a turbulent slot jet flow impinging on concave surfaces,” Int. Commun. Heat Mass Transf., vol. 44, pp. 77–82, May 2013, doi: 10.1016/J.ICHEATMASSTRANSFER.2013.03.006.
  • M. Kilic, T. Calisir, and S. Baskaya, “Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 1, pp. 329–344, 2017, doi: 10.1007/s40430-016-0521-y.
  • N. Celik and E. Turgut, “Design analysis of an experimental jet impingement study by using Taguchi method,” Heat Mass Transf., vol. 48, no. 8, pp. 1407–1413, 2012, doi: 10.1007/s00231-012-0989-7.
  • A. J. Onstad, T. B. Hoberg, C. J. Elkins, J. K. Eaton, and E. Mall, “Sixth International Symposium on Turbulence and Shear Flow Phenomena flow and heat transfer for jet impingement arrays with local extraction,” no. June, pp. 22–24, 2009.
  • R. Chauhan and S. C. Kim, “Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector,” Renew. Energy, vol. 138, pp. 955–963, 2019, doi: https://doi.org/10.1016/j.renene.2019.02.050.
  • G. Yang, M. Choi, and J. S. Lee, “An experimental study of slot jet impingement cooling on concave surface: Effects of nozzle configuration and curvature,” Int. J. Heat Mass Transf., vol. 42, no. 12, pp. 2199–2209, 1999, doi: 10.1016/S0017-9310(98)00337-8.
  • P. Culun, N. Celik, and K. Pihtili, “Effects of design parameters on a multi jet impinging heat transfer,” Alexandria Eng. J., vol. 57, no. 4, pp. 4255–4266, 2018, doi: https://doi.org/10.1016/j.aej.2018.01.022.
  • A. M. Aboghrara et al., “Parametric study on the thermal performance and optimal design elements of solar air heater enhanced with jet impingement on a corrugated absorber plate,” Int. J. Photoenergy, vol. 2018, 2018, doi: 10.1155/2018/1469385.
  • M. Belusko, W. Saman, and F. Bruno, “Performance of jet impingement in unglazed air collectors,” vol. 82, pp. 389–398, 2008, doi: 10.1016/j.solener.2007.10.005.
  • R. Ekiciler, M. S. A. Çetinkaya, and K. Arslan, “Convective Heat Transfer Investigation of a Confined Air Slot-Jet Impingement Cooling on Corrugated Surfaces With Different Wave Shapes,” J. Heat Transfer, vol. 141, no. 2, p. 022202, 2018, doi: 10.1115/1.4041954.
  • N. K. Chougule, G. V Parishwad, and C. M. Sewatkar, “Numerical Analysis of Pin Fin Heat Sink with a Single and Multi Air Jet Impingement Condition,” vol. 1, no. 3, pp. 44–50, 2012
  • A. kumar Goel, S. N. Singh, and B. N. Prasad, “Experimental investigation of thermo-hydraulic efficiency and performance characteristics of an impinging jet-finned type solar air heater,” Sustain. Energy Technol. Assessments, vol. 52, Aug. 2022.
  • R.K. Nayak, S.N. Singh, Effect of geometrical aspects on the performance of jet plate solar air heater, Sol. Energy. 137 (2016) 434–440, https://doi.org/10.1016/j. solener.2016.08.024.
  • Kercher DM, Tabakoff W, Heat Transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air, ASME- Paper 69-GT-4. (1969). https://asmedigitalcollection.asme.org/gasturbinespower
  • J.E. Ferrari, N. Lior, J. Slycke, An evaluation of gas quenching of steel rings by multiple-jet impingement, J. Mater. Process. Technol. 136 (2003) 190–201, https://doi.org/10.1016/S0924-0136(03)00158-4.
  • L.W. Florschuetz, C.R. Truman, D.E. Metzger, Streamwise flow and heat transfer distributions for jet array impingement with crossflow., Am. Soc. Mech. Eng. (1981) 1–10. http://proceedings.asmedigitalcollection.asme.org/.
  • L.F.G. Geers, M.J. Tummers, T.J. Bueninck, K. Hanjali´ c, Heat transfer correlation for hexagonal and in-line arrays of impinging jets, Int. J. Heat Mass Transf. 51 (2008) 5389–5399, https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.035.
  • M. Goodro, J. Park, P. Ligrani, M. Fox, H.K. Moon, Effects of hole spacing on spatially-resolved jet array impingement heat transfer, Int. J. Heat Mass Transf. 51 (2008) 6243–6253, https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.004.
  • J. Lee, Z. Ren, P. Ligrani, D.H. Lee, M.D. Fox, H.K. Moon, Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing, Int. J. Heat Mass Transf. 75 (2014) 534–544, https://doi.org/10.1016/j. ijheatmasstransfer.2014.03.040.
  • C. Choudhury, H.P. Garg, Evaluation of a jet plate solar air heater, Sol. Energy. 46 (1991) 199–209, https://doi.org/10.1016/0038-092X(91)90064-4.
  • Metzger, D. E., Florschuetz, L. W., Takeuchi, D. I., Behee, R. D., & Berry, R. A., 1979. Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air. ASME Journal of Heat Transfer, 101 (3), 526–531 https://doi.org/10.1115/1.3451022.
  • R. Moshery, T.Y. Chai, K. Sopian, A. Fudholi, A.H.A. Al-Waeli, Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate, Sol. Energy. 214 (2021) 355–366, https://doi.org/10.1016/j. solener.2020.11.059.
  • Song, Z., Xue, Y., Jia, B., He, Y., 2023. Introduction of the rectangular hole plate in favor the performance of photovoltaic thermal solar air heaters with baffles. Appl. Therm. Eng. 220, 119774.
  • Tan, A.S.T., Janaun, J., Tham, H.J., Siambun, N.J., Abdullah, A., 2022. Performance analysis of a solar heat collector through experimental and CFD investigation. Mater. Today.: Proc. 57, 1338–1344.
  • S. Kumar et al., “CFD analysis of the influence of distinct thermal enhancement techniques on the efficiency of double pass solar air heater (DP-SAH),” Materials Today: Proceedings, Jun. 2023, doi: 10.1016/j.matpr.2023.05.454.
  • Arya, N., Goel, V., Sunden, B., 2023. Solar air heater performance enhancement with differently shaped miniature combined with dimple shaped roughness: CFD and experimental analysis. Sol. Energy 250, 33–50.
  • Potgieter, M.S.W., Bester, C.R., Bhamjee, M., 2020. Experimental and CFD investigation of a hybrid solar air heater. Sol. Energy 195, 413–428.
  • Tuncer, A.D., Khanlari, A., S¨ ozen, A., Gürbüz, E.Y., S¸irin, C., Gungor, A., 2020. Energy- exergy and enviro-economic survey of solar air heaters with various air channel modifications. Renew. Energy 160, 67–85.
  • Kumar, S., & Saini, R. P., 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable energy, 34(5), 1285-1291.
  • Karmare, S. V., & Tikekar, A. N., 2010. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84(3), 409-417.
  • Boulemtafes-Boukadoum, A., & Benzaoui, A. J. E. P., 2014. CFD based analysis of heat transfer enhancement in solar air heater provided with transverse rectangular ribs. Energy Procedia, 50, 761-772.
  • Singh, S., Singh, B., Hans, V. S., & Gill, R. S., 2015. CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib. Energy, 84, 509-517.
  • Gawande, V.B., Dhoble, A.S., Zodpe, D.B., Chamoli, S., 2015b. Experimental and CFD based thermal performance prediction of solar air heater provided with right-angle triangular rib as artificial roughness. J. Braz. Soc. Mech. Sci. Eng. 38, 551–579.
  • Singh, A., & Singh, S., 2017. CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct. Energy, 128, 109-127.
  • Thakur, D. S., Khan, M. K., & Pathak, M., 2017. Performance evaluation of solar air heater with novel hyperbolic rib geometry. Renewable Energy, 105, 786-797.
  • Kumar, A., Kumar, N., Kumar, S., & Maithani, R., 2023. Exergetic efficiency analysis of impingement jets integrated with internal conical ring roughened solar heat collector. Experimental Heat Transfer, 36(1), 75-95.
  • A.M. Fadhil, J.M. Jalil, G.A. Bilal, Experimental and numerical investigation of solar air collector with phase change material in column obstruction, J. Energy Storage 79 (2024) 110066, https://doi.org/10.1016/j.est.2023.110066.
  • S. Yadav and R. P. Saini, “Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate,” Solar Energy, vol. 208, pp. 236–248, Sep. 2020, doi: 10.1016/j.solener.2020.07.088.
  • Das, S., Biswas, A., & Das, B., 2023. Parametric investigation on the thermo-hydraulic performance of a novel solar air heater design with conical protruded nozzle jet impingement. Applied Thermal Engineering, 219, 119583.
  • J. Pal and S. K. Singal, “Numerical Analysis of Influence of Angle of Attack on the Performance of Solar Air Heater Having Cylindrical Jet Impingement Plate,” in 2023 10th International Conference on Power and Energy Systems Engineering (CPESE), IEEE, Sep. 2023, pp. 346–351. doi: 10.1109/CPESE59653.2023.10303058.
  • T. Rajaseenivasan, S. Ravi Prasanth, M. Salamon Antony, K. Srithar, Experimental investigation on the performance of an impinging jet solar air heater, Alexandria Eng. J. 56 (2017) 63–69, https://doi.org/10.1016/j.aej.2016.09.004.
  • A. Soni, S.N. Singh, Experimental analysis of geometrical parameters on the performance of an inline jet plate solar air heater, Sol. Energy. 148 (2017) 149–156, https://doi.org/10.1016/j.solener.2017.03.081.
  • R. Nadda, A. Kumar, R. Maithani, Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles, Sol. Energy. 158 (2017) 117–131, https://doi.org/10.1016/j.solener.2017.09.042.
  • R. Nadda, R. Kumar, A. Kumar, R. Maithani, Optimization of single arc protrusion ribs parameters in solar air heater with impinging air jets based upon PSI approach, Therm. Sci. Eng. Prog. 7 (2018) 146–154, https://doi.org/10.1016/j. tsep.2018.05.008.
  • R. Maithani, S. Sharma, A. Kumar, Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater, Renew. Energy. 179 (2021) 84–95, https://doi.org/10.1016/j.renene.2021.07.013.
  • M. Zukowski, Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater, Appl. Energy. 142 (2015) 10–20, https://doi.org/ 10.1016/j.apenergy.2014.12.052.
  • R. Chauhan, N.S. Thakur, Investigation of the thermohydraulic performance of impinging jet solar air heater, Energy. 68 (2014) 255–261, https://doi.org/ 10.1016/j.energy.2014.02.059.
  • R. Chauhan, T. Singh, N.S. Thakur, A. Patnaik, Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method, Renew. Energy. 99 (2016) 118–126, https://doi.org/10.1016/j. renene.2016.06.046.
  • R. Chauhan, T. Singh, N. Kumar, A. Patnaik, N.S. Thakur, Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method, Appl. Therm. Eng. 116 (2017) 100–109, https://doi.org/10.1016/j. applthermaleng.2017.01.025.
  • A.M. Aboghrara, B.T.H.T. Baharudin, M.A. Alghoul, N.M. Adam, A.A. Hairuddin, H.A. Hasan, Performance analysis of solar air heater with jet impingement on corrugated absorber plate, Case Stud, Therm. Eng. 10 (2017) 111–120, https://doi. org/10.1016/j.csite.2017.04.002.
  • D. Singh, B. Premachandran, S. Kohli, Numerical Simulation of the Jet Impingement Cooling of a Circular Cylinder, Numerical Heat Transfer, Part A: Applications 64 (2) (2013) 153–185, https://doi.org/10.1080/ 10407782.2013.772869.
  • Tobergte D.R. and Curtis, S. (2013) Detection, Estimation, and Modulation Theory. Journal of Chemical Information and Modeling, 53, 1689-1699.
  • Thakur, D.S., Khan, M.K., Pathak, M., 2017. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renewable Energy 113, 357–368. https:// doi.org/10.1016/j.renene.2017.05.096.
  • Singh S, Chaurasiya SK, Negi BS, Chander S, Nem´ s M, Negi S. Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renew Energy 2020;154:1327–45. https://doi.org/10.1016/j.renene.2020.03.095.
  • Holman, J.P., 2001. Analysis of experimental data. In Experimental Methods for Engineers, 7th ed.; McGraw Hill: Singapore, pp. 48–143.

EXPERIMENTAL AND NUMERICAL ANALYSIS OF JET IMPINGING SOLAR AIR COLLECTOR WİTH HEMİSPHERİCAL SURFACE ABSORBER PLATE AND CIRCULAR TAPARED NOZZLE

Year 2024, , 332 - 351, 31.08.2024
https://doi.org/10.54365/adyumbd.1490486

Abstract

In order to increase the thermal efficiency of solar air collectors (SACs) used in hot air production for various industrial and domestic applications, studies are generally carried out on collector geometry and flow models. In jet impinging air collectors (JIPSAC), the geometric shape of the absorber plate and nozzle significantly affects the thermal performance. In this study, a hemispherical surface absorber plate (HAP) and circular tapered nozzle (CTN) pair are proposed to increase the thermal efficiency of a jet-impeding solar air collector. An experimental study was carried out to examine the effect of the jet flow air passing through the circular tapered nozzle hitting the hemispherical absorber plate on thermal efficiency. To compare the experimental results, CFD analysis of the created model was performed using Ansys Fluent 19.2 version. The contours of pressure and velocity streamlines are presented and discussed in order to help visualize the flow physics. From experimental and numerical analysis, it has been observed that the thermal efficiency of the jet impingement solar air collector using hemispherical absorber plate and circular tethered nozzle pair (HAP-CTN) provides a 12.33% increase on the average outlet temperature compared to the jet impinging solar air collector with flat absorber plate. In JIPSAC where HAP-CTN pair is used, in the experimental study conducted for the same combinations, the highest average efficiency of the collector was determined to be 24.5% and the highest average collector outlet temperature was 47.8 oC at a mass flow rate of 0.0185 kg/s

Project Number

19249

References

  • Sureandhar, G., Srinivasan, G., Muthukumar, P., Senthilmurugan, S., 2021. Performance analysis of arc rib fin embedded in a solar air heater. Therm. Sci. Eng. Prog. 23 https://doi.org/10.1016/j.tsep.2021.100891.
  • Rahmani, E., Moradi, T., Fattahi, A., Delpisheh, M., Karimi, N., Ommi, F., et al., 2021. Numerical simulation of a solar air heater equipped with wavy and raccoon-shaped f ins: The effect of fins’ height. Sustain Energy Technol. Assess. 45, 101227 https:// doi.org/10.1016/j.seta.2021.10122
  • Parsa, H., Saffar-Avval, M., Hajmohammadi, M.R., 2021. 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles. Int J. Mech. Sci. 205, 106607 https://doi.org/10.1016/j.ijmecsci.2021.106607.
  • Amara, W.B., Bouabidi, A., 2023. Experimental studies and 3D simulations for the investigation of thermal performances of a solar air heater with different spiral- shaped baffles heights. J. Build. Eng. 65, 105662.
  • Khanlari, A., Tuncer, A.D., S¨ ozen, A., Aytaç, I., Çiftçi, E., Variyenli, H.˙ I., 2022. Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles. Renew. Energy 187, 586–602.
  • Selimefendigil, F., S ¸irin, C., Ghachem, K., Kolsi, L., Alqahtani, T., Algarni, S., 2022b. Enhancing the performance of a greenhouse drying system by using triple-flow solar air collector with nano-enhanced absorber coating. Case Stud. Therm. Eng. 34, 102011.
  • Oztürk, M., Yüksel, C., Çiftçi, E., 2024. Investigation of a Photovoltaic–Thermal Solar Dryer System with Double-Pass Solar Air Collectors and Absorber Surfaces Enhanced with Graphene Nanoparticles. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369- 024-08717-z.
  • Jasyal, N.K., Sharma, S.L., Debbarma, A., 2023. Performance analysis of solar air heater using triangular corrugated absorber under jet impingement. Energy Sources, Part A: Recovery, Util., Environ. Eff. 45 (3), 9063–9080.
  • Ho, C.D., Lin, C.S., Chuang, Y.C., Chao, C.C., 2013. Performance improvement of wire mesh packed double-pass solar air heaters with external recycle. Renew. Energy 57, 479–489.
  • Gürbüz, E.Y., Sahinkesen, ˙ I., Kusun, B., Tuncer, A.D., Keçebas¸, A., 2023. Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano- enhanced absorber coating. Energy 277, 127704.
  • Dong, Z., Du, Q., Liu, P., Liu, Z., Liu, W., 2023. A numerical investigation and irreversibility optimization of constantly grooved solar air heaters. Renew. Energy 207, 629–646.
  • Tuncer, A.D., Amini, A., Khanlari, A., 2023. Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint. Sol. Energy 263, 111958.
  • Alomar, O.R., Abd, H.M., Salih, M.M.M., 2022. Efficiency enhancement of solar air heater collector by modifying jet impingement with v-corrugated absorber plate. J. Energy Storage 55, 105535.
  • Farzan, H., Hasan Zaim, E., 2023. Study on thermal performance of a new combined perforated Metallic/Asphalt solar air heater for heating Applications: An experimental study. Sol. Energy 249, 485–494. https://doi.org/10.1016/j. solener.2022.12.008.
  • W. Gao, W. Lin, T. Liu, and C. Xia, “Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters,” Appl. Energy, vol. 84, no. 4, pp. 425–441, 2007, doi: https://doi.org/10.1016/j.apenergy.2006.02.005.
  • T. A. Yassen, N. D. Mokhlif, and M. Asmail, “Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use,” Renew. Energy, vol. 138, pp. 852–860, 2019, doi: 10.1016/j.renene.2019.01.114.
  • S.A. Abdel-Moneim Atwan, E.F. Atwan, and A.R. El-Shamy, “Heat Transfer and Flow Friction in a Rectangular Duct with Repeated Multiple v-ribs Mounted on the Bottom Wall,” in 12th International Mechanical Power Engineering Conference (IMPEC12), 2001, pp. 11–25.
  • C.-O. Olsson and B. Sunden, “Thermal and Hydraulic Performance of a Rectangular Duct With Multiple V-Shaped Ribs,” J. Heat Transfer, vol. 120, no. 4, pp. 1072–1077, Nov. 1998, doi: 10.1115/1.2825892.
  • J. C. Han, Y. M. Zhang, and C. P. Lee, “Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs,” J. Heat Transfer, vol. 113, no. 3, pp. 590–596, Aug. 1991, doi: 10.1115/1.2910606.
  • E. A. M. Elshafei, M. M. Awad, E. El-Negiry, and A. G. Ali, “Heat transfer and pressure drop in corrugated channels,” Energy, vol. 35, no. 1, pp. 101–110, Jan. 2010, doi: 10.1016/J.ENERGY.2009.08.031.
  • H. Pehlivan, I. Taymaz, and Y. İ, “Experimental study of forced convective heat transfer in a different arranged corrugated channel,” Int. Commun. Heat Mass Transf., vol. 46, pp. 106–111, 2013, doi: 10.1016/j.icheatmasstransfer.2013.05.016.
  • M. A. Mehrabian and R. Poulter, “Hydrodynamics and thermal characteristics of corrugated channels: computational approach,” Appl. Math. Model., vol. 24, no. 5, pp. 343–364, 2000, doi: https://doi.org/10.1016/S0307-904X(99)00039-6.
  • K. Sarraf, S. Launay, and L. Tadrist, “Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers,” Int. J. Therm. Sci., vol. 94, pp. 126–138, 2015, doi: https://doi.org/10.1016/j.ijthermalsci.2015.03.002.
  • Y. Qin, X. Guan, Z. Dun, and H. Liu, “Numerical simulation on fluid flow and heat transfer in a corrugated plate air preheater,” Dongli Gongcheng Xuebao/Journal Chinese Soc. Power Eng., vol. 35, pp. 213–218, Mar. 2015.
  • C. Zimmerer, P. Gschwind, G. Gaiser, and V. Kottke, “Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls,” Exp. Therm. Fluid Sci., vol. 26, no. 2, pp. 269–273, 2002, doi: https://doi.org/10.1016/S0894-1777(02)00136-X.
  • J. E. O’Brien and E. M. Sparrow, “Corrugated-Duct Heat Transfer, Pressure Drop, and Flow Visualization,” J. Heat Transfer, vol. 104, no. 3, p. 410, Aug. 1982, doi: 10.1115/1.3245108.
  • Y. Islamoglu and C. Parmaksizoglu, “The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel,” Appl. Therm. Eng., vol. 23, no. 8, pp. 979–987, Jun. 2003, doi: 10.1016/S1359-4311(03)00029-2.
  • A. Hamza, H. Ali, and Y. Hanaoka, “Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation,” Int. J. Heat Mass Transf., vol. 45, no. 10, pp. 2107–2117, 2002.
  • Salman, M., Chauhan, R., Poongavanam, G. K., & Kim, S. C., 2022. Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis. Renewable Energy, 199, 1248-1257.
  • Zhu, T. T., Diao, Y. H., Zhao, Y. H., & Deng, Y. C., 2015. Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays. Energy conversion and management, 94, 447-457.
  • R. Chauhan and N. S. Thakur, “Heat transfer and friction factor correlations for impinging jet solar air heater,” Exp. Therm. Fluid Sci., vol. 44, pp. 760–767, 2013, doi: 10.1016/j.expthermflusci.2012.09.019.
  • M. A. R. Sharif and A. Banerjee, “Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate,” Appl. Therm. Eng., vol. 29, no. 2–3, pp. 532–540, Feb. 2009, doi: 10.1016/J.APPL THERMA LENG. 2008.03.011.
  • M. Imbriale, A. Ianiro, C. Meola, and G. Cardone, “Convective heat transfer by a row of jets impinging on a concave surface,” Int. J. Therm. Sci., vol. 75, pp. 153–163, Jan. 2014, doi: 10.1016/J.IJTHERMALSCI.2013.07.017.
  • E. Öztekin, O. Aydin, and M. Avcı, “Heat transfer in a turbulent slot jet flow impinging on concave surfaces,” Int. Commun. Heat Mass Transf., vol. 44, pp. 77–82, May 2013, doi: 10.1016/J.ICHEATMASSTRANSFER.2013.03.006.
  • M. Kilic, T. Calisir, and S. Baskaya, “Experimental and numerical study of heat transfer from a heated flat plate in a rectangular channel with an impinging air jet,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 1, pp. 329–344, 2017, doi: 10.1007/s40430-016-0521-y.
  • N. Celik and E. Turgut, “Design analysis of an experimental jet impingement study by using Taguchi method,” Heat Mass Transf., vol. 48, no. 8, pp. 1407–1413, 2012, doi: 10.1007/s00231-012-0989-7.
  • A. J. Onstad, T. B. Hoberg, C. J. Elkins, J. K. Eaton, and E. Mall, “Sixth International Symposium on Turbulence and Shear Flow Phenomena flow and heat transfer for jet impingement arrays with local extraction,” no. June, pp. 22–24, 2009.
  • R. Chauhan and S. C. Kim, “Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector,” Renew. Energy, vol. 138, pp. 955–963, 2019, doi: https://doi.org/10.1016/j.renene.2019.02.050.
  • G. Yang, M. Choi, and J. S. Lee, “An experimental study of slot jet impingement cooling on concave surface: Effects of nozzle configuration and curvature,” Int. J. Heat Mass Transf., vol. 42, no. 12, pp. 2199–2209, 1999, doi: 10.1016/S0017-9310(98)00337-8.
  • P. Culun, N. Celik, and K. Pihtili, “Effects of design parameters on a multi jet impinging heat transfer,” Alexandria Eng. J., vol. 57, no. 4, pp. 4255–4266, 2018, doi: https://doi.org/10.1016/j.aej.2018.01.022.
  • A. M. Aboghrara et al., “Parametric study on the thermal performance and optimal design elements of solar air heater enhanced with jet impingement on a corrugated absorber plate,” Int. J. Photoenergy, vol. 2018, 2018, doi: 10.1155/2018/1469385.
  • M. Belusko, W. Saman, and F. Bruno, “Performance of jet impingement in unglazed air collectors,” vol. 82, pp. 389–398, 2008, doi: 10.1016/j.solener.2007.10.005.
  • R. Ekiciler, M. S. A. Çetinkaya, and K. Arslan, “Convective Heat Transfer Investigation of a Confined Air Slot-Jet Impingement Cooling on Corrugated Surfaces With Different Wave Shapes,” J. Heat Transfer, vol. 141, no. 2, p. 022202, 2018, doi: 10.1115/1.4041954.
  • N. K. Chougule, G. V Parishwad, and C. M. Sewatkar, “Numerical Analysis of Pin Fin Heat Sink with a Single and Multi Air Jet Impingement Condition,” vol. 1, no. 3, pp. 44–50, 2012
  • A. kumar Goel, S. N. Singh, and B. N. Prasad, “Experimental investigation of thermo-hydraulic efficiency and performance characteristics of an impinging jet-finned type solar air heater,” Sustain. Energy Technol. Assessments, vol. 52, Aug. 2022.
  • R.K. Nayak, S.N. Singh, Effect of geometrical aspects on the performance of jet plate solar air heater, Sol. Energy. 137 (2016) 434–440, https://doi.org/10.1016/j. solener.2016.08.024.
  • Kercher DM, Tabakoff W, Heat Transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air, ASME- Paper 69-GT-4. (1969). https://asmedigitalcollection.asme.org/gasturbinespower
  • J.E. Ferrari, N. Lior, J. Slycke, An evaluation of gas quenching of steel rings by multiple-jet impingement, J. Mater. Process. Technol. 136 (2003) 190–201, https://doi.org/10.1016/S0924-0136(03)00158-4.
  • L.W. Florschuetz, C.R. Truman, D.E. Metzger, Streamwise flow and heat transfer distributions for jet array impingement with crossflow., Am. Soc. Mech. Eng. (1981) 1–10. http://proceedings.asmedigitalcollection.asme.org/.
  • L.F.G. Geers, M.J. Tummers, T.J. Bueninck, K. Hanjali´ c, Heat transfer correlation for hexagonal and in-line arrays of impinging jets, Int. J. Heat Mass Transf. 51 (2008) 5389–5399, https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.035.
  • M. Goodro, J. Park, P. Ligrani, M. Fox, H.K. Moon, Effects of hole spacing on spatially-resolved jet array impingement heat transfer, Int. J. Heat Mass Transf. 51 (2008) 6243–6253, https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.004.
  • J. Lee, Z. Ren, P. Ligrani, D.H. Lee, M.D. Fox, H.K. Moon, Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing, Int. J. Heat Mass Transf. 75 (2014) 534–544, https://doi.org/10.1016/j. ijheatmasstransfer.2014.03.040.
  • C. Choudhury, H.P. Garg, Evaluation of a jet plate solar air heater, Sol. Energy. 46 (1991) 199–209, https://doi.org/10.1016/0038-092X(91)90064-4.
  • Metzger, D. E., Florschuetz, L. W., Takeuchi, D. I., Behee, R. D., & Berry, R. A., 1979. Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air. ASME Journal of Heat Transfer, 101 (3), 526–531 https://doi.org/10.1115/1.3451022.
  • R. Moshery, T.Y. Chai, K. Sopian, A. Fudholi, A.H.A. Al-Waeli, Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate, Sol. Energy. 214 (2021) 355–366, https://doi.org/10.1016/j. solener.2020.11.059.
  • Song, Z., Xue, Y., Jia, B., He, Y., 2023. Introduction of the rectangular hole plate in favor the performance of photovoltaic thermal solar air heaters with baffles. Appl. Therm. Eng. 220, 119774.
  • Tan, A.S.T., Janaun, J., Tham, H.J., Siambun, N.J., Abdullah, A., 2022. Performance analysis of a solar heat collector through experimental and CFD investigation. Mater. Today.: Proc. 57, 1338–1344.
  • S. Kumar et al., “CFD analysis of the influence of distinct thermal enhancement techniques on the efficiency of double pass solar air heater (DP-SAH),” Materials Today: Proceedings, Jun. 2023, doi: 10.1016/j.matpr.2023.05.454.
  • Arya, N., Goel, V., Sunden, B., 2023. Solar air heater performance enhancement with differently shaped miniature combined with dimple shaped roughness: CFD and experimental analysis. Sol. Energy 250, 33–50.
  • Potgieter, M.S.W., Bester, C.R., Bhamjee, M., 2020. Experimental and CFD investigation of a hybrid solar air heater. Sol. Energy 195, 413–428.
  • Tuncer, A.D., Khanlari, A., S¨ ozen, A., Gürbüz, E.Y., S¸irin, C., Gungor, A., 2020. Energy- exergy and enviro-economic survey of solar air heaters with various air channel modifications. Renew. Energy 160, 67–85.
  • Kumar, S., & Saini, R. P., 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable energy, 34(5), 1285-1291.
  • Karmare, S. V., & Tikekar, A. N., 2010. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84(3), 409-417.
  • Boulemtafes-Boukadoum, A., & Benzaoui, A. J. E. P., 2014. CFD based analysis of heat transfer enhancement in solar air heater provided with transverse rectangular ribs. Energy Procedia, 50, 761-772.
  • Singh, S., Singh, B., Hans, V. S., & Gill, R. S., 2015. CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib. Energy, 84, 509-517.
  • Gawande, V.B., Dhoble, A.S., Zodpe, D.B., Chamoli, S., 2015b. Experimental and CFD based thermal performance prediction of solar air heater provided with right-angle triangular rib as artificial roughness. J. Braz. Soc. Mech. Sci. Eng. 38, 551–579.
  • Singh, A., & Singh, S., 2017. CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct. Energy, 128, 109-127.
  • Thakur, D. S., Khan, M. K., & Pathak, M., 2017. Performance evaluation of solar air heater with novel hyperbolic rib geometry. Renewable Energy, 105, 786-797.
  • Kumar, A., Kumar, N., Kumar, S., & Maithani, R., 2023. Exergetic efficiency analysis of impingement jets integrated with internal conical ring roughened solar heat collector. Experimental Heat Transfer, 36(1), 75-95.
  • A.M. Fadhil, J.M. Jalil, G.A. Bilal, Experimental and numerical investigation of solar air collector with phase change material in column obstruction, J. Energy Storage 79 (2024) 110066, https://doi.org/10.1016/j.est.2023.110066.
  • S. Yadav and R. P. Saini, “Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate,” Solar Energy, vol. 208, pp. 236–248, Sep. 2020, doi: 10.1016/j.solener.2020.07.088.
  • Das, S., Biswas, A., & Das, B., 2023. Parametric investigation on the thermo-hydraulic performance of a novel solar air heater design with conical protruded nozzle jet impingement. Applied Thermal Engineering, 219, 119583.
  • J. Pal and S. K. Singal, “Numerical Analysis of Influence of Angle of Attack on the Performance of Solar Air Heater Having Cylindrical Jet Impingement Plate,” in 2023 10th International Conference on Power and Energy Systems Engineering (CPESE), IEEE, Sep. 2023, pp. 346–351. doi: 10.1109/CPESE59653.2023.10303058.
  • T. Rajaseenivasan, S. Ravi Prasanth, M. Salamon Antony, K. Srithar, Experimental investigation on the performance of an impinging jet solar air heater, Alexandria Eng. J. 56 (2017) 63–69, https://doi.org/10.1016/j.aej.2016.09.004.
  • A. Soni, S.N. Singh, Experimental analysis of geometrical parameters on the performance of an inline jet plate solar air heater, Sol. Energy. 148 (2017) 149–156, https://doi.org/10.1016/j.solener.2017.03.081.
  • R. Nadda, A. Kumar, R. Maithani, Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles, Sol. Energy. 158 (2017) 117–131, https://doi.org/10.1016/j.solener.2017.09.042.
  • R. Nadda, R. Kumar, A. Kumar, R. Maithani, Optimization of single arc protrusion ribs parameters in solar air heater with impinging air jets based upon PSI approach, Therm. Sci. Eng. Prog. 7 (2018) 146–154, https://doi.org/10.1016/j. tsep.2018.05.008.
  • R. Maithani, S. Sharma, A. Kumar, Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater, Renew. Energy. 179 (2021) 84–95, https://doi.org/10.1016/j.renene.2021.07.013.
  • M. Zukowski, Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater, Appl. Energy. 142 (2015) 10–20, https://doi.org/ 10.1016/j.apenergy.2014.12.052.
  • R. Chauhan, N.S. Thakur, Investigation of the thermohydraulic performance of impinging jet solar air heater, Energy. 68 (2014) 255–261, https://doi.org/ 10.1016/j.energy.2014.02.059.
  • R. Chauhan, T. Singh, N.S. Thakur, A. Patnaik, Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method, Renew. Energy. 99 (2016) 118–126, https://doi.org/10.1016/j. renene.2016.06.046.
  • R. Chauhan, T. Singh, N. Kumar, A. Patnaik, N.S. Thakur, Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method, Appl. Therm. Eng. 116 (2017) 100–109, https://doi.org/10.1016/j. applthermaleng.2017.01.025.
  • A.M. Aboghrara, B.T.H.T. Baharudin, M.A. Alghoul, N.M. Adam, A.A. Hairuddin, H.A. Hasan, Performance analysis of solar air heater with jet impingement on corrugated absorber plate, Case Stud, Therm. Eng. 10 (2017) 111–120, https://doi. org/10.1016/j.csite.2017.04.002.
  • D. Singh, B. Premachandran, S. Kohli, Numerical Simulation of the Jet Impingement Cooling of a Circular Cylinder, Numerical Heat Transfer, Part A: Applications 64 (2) (2013) 153–185, https://doi.org/10.1080/ 10407782.2013.772869.
  • Tobergte D.R. and Curtis, S. (2013) Detection, Estimation, and Modulation Theory. Journal of Chemical Information and Modeling, 53, 1689-1699.
  • Thakur, D.S., Khan, M.K., Pathak, M., 2017. Solar air heater with hyperbolic ribs: 3D simulation with experimental validation. Renewable Energy 113, 357–368. https:// doi.org/10.1016/j.renene.2017.05.096.
  • Singh S, Chaurasiya SK, Negi BS, Chander S, Nem´ s M, Negi S. Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renew Energy 2020;154:1327–45. https://doi.org/10.1016/j.renene.2020.03.095.
  • Holman, J.P., 2001. Analysis of experimental data. In Experimental Methods for Engineers, 7th ed.; McGraw Hill: Singapore, pp. 48–143.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Makaleler
Authors

İbrahim Sancar 0000-0003-0282-6562

Hüsamettin Bulut 0000-0001-7123-1648

Refet Karadağ 0000-0001-9120-2764

Project Number 19249
Publication Date August 31, 2024
Submission Date May 27, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Sancar, İ., Bulut, H., & Karadağ, R. (2024). YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 11(23), 332-351. https://doi.org/10.54365/adyumbd.1490486
AMA Sancar İ, Bulut H, Karadağ R. YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2024;11(23):332-351. doi:10.54365/adyumbd.1490486
Chicago Sancar, İbrahim, Hüsamettin Bulut, and Refet Karadağ. “YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 23 (August 2024): 332-51. https://doi.org/10.54365/adyumbd.1490486.
EndNote Sancar İ, Bulut H, Karadağ R (August 1, 2024) YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11 23 332–351.
IEEE İ. Sancar, H. Bulut, and R. Karadağ, “YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 23, pp. 332–351, 2024, doi: 10.54365/adyumbd.1490486.
ISNAD Sancar, İbrahim et al. “YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11/23 (August 2024), 332-351. https://doi.org/10.54365/adyumbd.1490486.
JAMA Sancar İ, Bulut H, Karadağ R. YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11:332–351.
MLA Sancar, İbrahim et al. “YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 23, 2024, pp. 332-51, doi:10.54365/adyumbd.1490486.
Vancouver Sancar İ, Bulut H, Karadağ R. YARIM KÜRESEL YÜZEYLİ YUTUCU PLAKA VE DAIRESEL KONIK NOZULLU JET ÇARPMALI HAVALI GÜNEŞ KOLLEKTÖRÜNÜN DENEYSEL VE SAYISAL ANALİZİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11(23):332-51.