Research Article
BibTex RIS Cite

FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ

Year 2021, , 427 - 441, 31.12.2021
https://doi.org/10.54365/adyumbd.987338

Abstract

Hidrolik sıçrama, akımın sahip olduğu enerjinin büyük miktarının sönümlendiği ve aşırı türbülansın oluştuğu oldukça karmaşık akım problemidir. Bu çalışmada, farklı akım durumlarında kayar kapak mansabında oluşan batmış hidrolik sıçramanın sayısal modellemesi yapılmıştır. ANSYS- Fluent programı kullanılarak akımı idare eden temel denklemlerin sayısal olarak çözümünde, türbülans viskozitesinin hesap edilmesinde Reynolds Ortalamalı Navier Stokes (RANS) tabanlı Reynolds Gerilme Modeli (Reynolds Strees Model-RSM) ve su- hava arakesitinin belirlenmesinde ise Akışkan Hacimleri Yöntemi (Volume of Fluids) kullanılmıştır. Q6 durumunun sayısal modellemesinden elde edilen hız profilleri, deneysel hız profilleriyle karşılaştırılmıştır. Farklı batıklık oranlarına sahip batmış hidrolik sıçramanın sayısal modellemesi sonucunda, meydana gelen hidrolik sıçrama ve geri dönüş bölgesi uzunlukları ve hız alanında meydana gelen değişimler değerlendirilmiştir. Bunun yanında, hidrolik sıçramada meydana gelen sınır tabakası kalınlığı farklı akım durumlarında incelenmiştir. Çalışma sonucunda, sayısal modelleme tekniklerinin, farklı batıklık oranlarında oluşan hidrolik sıçramanın sayısal modellemesinde oldukça başarılı olduğu ve deneysel çalışmalara kıyasla akımla ilgili detaylı bilgi sunma avantajından dolayı su yapılarının tasarımında tercih edilebileceği belirlenmiştir.

References

  • De Padova D. Mossa M. Sibilla S. SPH numerical investigation of characteristics of hydraulic jumps. Environmental Fluid Mechanics 2018; 18(4): 849-870. Doi.10.1007/s10652-017-9566-4.
  • Singh D. Das AK. Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions. Computers & Fluids 2018; 170: 1-12. Doi.10.1016/j.compfluid.2018.04.024.
  • Roushangar K. Homayounfar F. Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method. KSCE Journal of Civil Engineering 2019; 23(11): 4696-4709. Doi.10.1007/s12205-019-1070-6.
  • Pourabdollah N. Heidarpour M. Abedi Koupai J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Proceedings of the Institution of Civil Engineers-Water Management 2020; 173(3): 121-131. Doi.10.1680/jwama.19.00029.
  • Roy Biswas T. Dey S. Sen D. Undular hydraulic jumps: critical analysis of 2D RANS-VOF simulations. Journal of Hydraulic Engineering 2021; 147(11): 06021017. Doi.10.1061/(ASCE)HY.1943-7900.0001939.
  • Park M. Kim HS. Choi S. Ryu YU. PIV and BIV Measurements of Roller in Hydraulic Jumps. Journal of Coastal Research 2021; 114: 56-60. Doi.10.2112/JCR-SI114-012.1.
  • Ma F, Hou Y, Prinos P. Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 2001; 39: 493-503. Doi.10.1080/00221686.2001.9628274.
  • Javan M, Eghbalzadeh A. 2D numerical simulation of submerged hydraulic jumps. Applied Mathematical Modelling 2013; 37(10–11):6661-6669. Doi.10.1016/j.apm.2012.12.016.
  • Ahmed HMA, El Gendy M, Mirdan AMH, Ali AAM. Haleem FSFA. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Engineering Journal 2014; 5(4): 1033-1042. Doi.10.1016/j.asej.2014.06.006.
  • Smetana J. Experimental Studies on the Free and Submerged Hydraulic Jumps. L'Energia Elettrica 1937; 24 (10): 829–835.
  • Citrini D. Il Salto di Bidone. L'Energia Elettrica 1939; 16 (6): 441–465.
  • Silvester R. Hydraulic jump in all shapes of horizontal channels. J. Hyd. Div. ASCE 1964; 90(1):23–55. Doi.10.1061/JYCEAJ.0000977.
  • Rajaratnam N. Hydraulic jump on rough bed. Trans Eng Inst Canada 1968; 11: 1–8.
  • Hager WH, Bremen R. Classical hydraulic jump; sequent depths. J Hydr. Res. 1989;27(5):565–85. Doi.10.1080/00221688909499111.
  • Izadjoo F, Shafai-Bajestan M. Effects of trapezoidal shape corrugated bed on the characteristics of hydraulic jump. In 17th Canadian hydrotechnical conference, Alberta, Canada, August 17–19, 2005.
  • Denli Tokyay N. Effect of channel bed corrugated on hydraulic jumps. In: Proceedings of the world water and environmental resources congress: impacts of global climate change, EWRI, 2005. 1-9. Doi.10.1061/40792(173)408.
  • Abdelhaleem Fahmy S, Amin AM, Helal YE. Effect of corrugated bed shapes on hydraulic jump and downstream local scour. The Journal of American Science 2012; 8(5):1–10.
  • Shekari Y. Javan M. Eghbalzadeh A. Effect of turbulence models on the submerged hydraulic jumpmsimulation. J. Appl. Mech. Tech. Phy. 2015; 56:454–463. Doi.10.1134/S0021894415030153.
  • Gümüş V. Aköz MS. Kırkgöz MS. Kapak mansabında batmış hidrolik sıçramanın deneysel ve sayısal modellenmesi. Teknik Dergi 2013; 24: 6379-6397.
  • Gumus V. Simsek O. Soydan NG. Akoz MS. Kirkgoz MS. Numerical modeling of submerged hydraulic jump from a sluice gate. Journal of Irrigation and Drainage Engineering 2016; 142(1): 04015037. Doi.10.1061/(ASCE)IR.1943-4774.0000948.
  • Rajaratnam N. Hydraulic jumps. Advances in Hydroscience 1967; 4: 197-279. Doi.10.1016/B978-1-4831-9935-1.50011-2.
  • Wilcox DC. Turbulence modeling for CFD. 1993. DCW Indus., California A.B.D. 456p.
  • Yakhot V. Orszag SA. Thangam S. Gatski TB. Speziale CG. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 19924; 7: 1510-1520. Doi.10.1063/1.858424.
  • Shih TW. Liou WW. Shabbir A. Yang Z. Zhu J. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows-model development and validation. Computers and Fluids 1995; 24(3): 227–238. Doi.10.1016/0045-7930(94)00032-T.
  • Launder BE. Reece GJ. Rodi W. Progress in the Development of a Reynolds-stress turbulent closure. Journal of Fluid Mechanics 1975; 68(3): 537-566. Doi.10.1017/S0022112075001814.
  • Hirt CW. Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 1981; 39: 201-225. Doi.10.1016/0021-9991(81)90145-5.
  • Roache PJ. Verification of codes and calculations. AIAA Journal 1998; 36(5): 696-702. Doi.10.2514/2.457.
  • Çelik İB. Ghia U. Roache PJ. Freitas CJ. Coleman H. Raad PE. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME Journal of Fluids Engineering 2008; 130(1): 1-4. Doi.10.1115/1.2960953.
Year 2021, , 427 - 441, 31.12.2021
https://doi.org/10.54365/adyumbd.987338

Abstract

References

  • De Padova D. Mossa M. Sibilla S. SPH numerical investigation of characteristics of hydraulic jumps. Environmental Fluid Mechanics 2018; 18(4): 849-870. Doi.10.1007/s10652-017-9566-4.
  • Singh D. Das AK. Computational simulation of radially asymmetric hydraulic jumps and jump–jump interactions. Computers & Fluids 2018; 170: 1-12. Doi.10.1016/j.compfluid.2018.04.024.
  • Roushangar K. Homayounfar F. Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method. KSCE Journal of Civil Engineering 2019; 23(11): 4696-4709. Doi.10.1007/s12205-019-1070-6.
  • Pourabdollah N. Heidarpour M. Abedi Koupai J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Proceedings of the Institution of Civil Engineers-Water Management 2020; 173(3): 121-131. Doi.10.1680/jwama.19.00029.
  • Roy Biswas T. Dey S. Sen D. Undular hydraulic jumps: critical analysis of 2D RANS-VOF simulations. Journal of Hydraulic Engineering 2021; 147(11): 06021017. Doi.10.1061/(ASCE)HY.1943-7900.0001939.
  • Park M. Kim HS. Choi S. Ryu YU. PIV and BIV Measurements of Roller in Hydraulic Jumps. Journal of Coastal Research 2021; 114: 56-60. Doi.10.2112/JCR-SI114-012.1.
  • Ma F, Hou Y, Prinos P. Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res. 2001; 39: 493-503. Doi.10.1080/00221686.2001.9628274.
  • Javan M, Eghbalzadeh A. 2D numerical simulation of submerged hydraulic jumps. Applied Mathematical Modelling 2013; 37(10–11):6661-6669. Doi.10.1016/j.apm.2012.12.016.
  • Ahmed HMA, El Gendy M, Mirdan AMH, Ali AAM. Haleem FSFA. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Engineering Journal 2014; 5(4): 1033-1042. Doi.10.1016/j.asej.2014.06.006.
  • Smetana J. Experimental Studies on the Free and Submerged Hydraulic Jumps. L'Energia Elettrica 1937; 24 (10): 829–835.
  • Citrini D. Il Salto di Bidone. L'Energia Elettrica 1939; 16 (6): 441–465.
  • Silvester R. Hydraulic jump in all shapes of horizontal channels. J. Hyd. Div. ASCE 1964; 90(1):23–55. Doi.10.1061/JYCEAJ.0000977.
  • Rajaratnam N. Hydraulic jump on rough bed. Trans Eng Inst Canada 1968; 11: 1–8.
  • Hager WH, Bremen R. Classical hydraulic jump; sequent depths. J Hydr. Res. 1989;27(5):565–85. Doi.10.1080/00221688909499111.
  • Izadjoo F, Shafai-Bajestan M. Effects of trapezoidal shape corrugated bed on the characteristics of hydraulic jump. In 17th Canadian hydrotechnical conference, Alberta, Canada, August 17–19, 2005.
  • Denli Tokyay N. Effect of channel bed corrugated on hydraulic jumps. In: Proceedings of the world water and environmental resources congress: impacts of global climate change, EWRI, 2005. 1-9. Doi.10.1061/40792(173)408.
  • Abdelhaleem Fahmy S, Amin AM, Helal YE. Effect of corrugated bed shapes on hydraulic jump and downstream local scour. The Journal of American Science 2012; 8(5):1–10.
  • Shekari Y. Javan M. Eghbalzadeh A. Effect of turbulence models on the submerged hydraulic jumpmsimulation. J. Appl. Mech. Tech. Phy. 2015; 56:454–463. Doi.10.1134/S0021894415030153.
  • Gümüş V. Aköz MS. Kırkgöz MS. Kapak mansabında batmış hidrolik sıçramanın deneysel ve sayısal modellenmesi. Teknik Dergi 2013; 24: 6379-6397.
  • Gumus V. Simsek O. Soydan NG. Akoz MS. Kirkgoz MS. Numerical modeling of submerged hydraulic jump from a sluice gate. Journal of Irrigation and Drainage Engineering 2016; 142(1): 04015037. Doi.10.1061/(ASCE)IR.1943-4774.0000948.
  • Rajaratnam N. Hydraulic jumps. Advances in Hydroscience 1967; 4: 197-279. Doi.10.1016/B978-1-4831-9935-1.50011-2.
  • Wilcox DC. Turbulence modeling for CFD. 1993. DCW Indus., California A.B.D. 456p.
  • Yakhot V. Orszag SA. Thangam S. Gatski TB. Speziale CG. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 19924; 7: 1510-1520. Doi.10.1063/1.858424.
  • Shih TW. Liou WW. Shabbir A. Yang Z. Zhu J. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows-model development and validation. Computers and Fluids 1995; 24(3): 227–238. Doi.10.1016/0045-7930(94)00032-T.
  • Launder BE. Reece GJ. Rodi W. Progress in the Development of a Reynolds-stress turbulent closure. Journal of Fluid Mechanics 1975; 68(3): 537-566. Doi.10.1017/S0022112075001814.
  • Hirt CW. Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 1981; 39: 201-225. Doi.10.1016/0021-9991(81)90145-5.
  • Roache PJ. Verification of codes and calculations. AIAA Journal 1998; 36(5): 696-702. Doi.10.2514/2.457.
  • Çelik İB. Ghia U. Roache PJ. Freitas CJ. Coleman H. Raad PE. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME Journal of Fluids Engineering 2008; 130(1): 1-4. Doi.10.1115/1.2960953.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Oğuz Şimşek 0000-0001-6324-0229

Mehmet Kösen 0000-0003-3076-2746

Veysel Gümüş 0000-0003-2321-9526

Publication Date December 31, 2021
Submission Date August 26, 2021
Published in Issue Year 2021

Cite

APA Şimşek, O., Kösen, M., & Gümüş, V. (2021). FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(15), 427-441. https://doi.org/10.54365/adyumbd.987338
AMA Şimşek O, Kösen M, Gümüş V. FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. December 2021;8(15):427-441. doi:10.54365/adyumbd.987338
Chicago Şimşek, Oğuz, Mehmet Kösen, and Veysel Gümüş. “FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 15 (December 2021): 427-41. https://doi.org/10.54365/adyumbd.987338.
EndNote Şimşek O, Kösen M, Gümüş V (December 1, 2021) FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8 15 427–441.
IEEE O. Şimşek, M. Kösen, and V. Gümüş, “FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, pp. 427–441, 2021, doi: 10.54365/adyumbd.987338.
ISNAD Şimşek, Oğuz et al. “FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8/15 (December 2021), 427-441. https://doi.org/10.54365/adyumbd.987338.
JAMA Şimşek O, Kösen M, Gümüş V. FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8:427–441.
MLA Şimşek, Oğuz et al. “FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, 2021, pp. 427-41, doi:10.54365/adyumbd.987338.
Vancouver Şimşek O, Kösen M, Gümüş V. FARKLI BATIKLIK ORANLARINA SAHİP BATIK HİDROLİK SIÇRAMANIN SAYISAL MODELLEMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8(15):427-41.